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Derek Lim

Spring 2019

Instructor: Anil Damle

Course Description: Introduction to the fundamentals of numerical linear algebra: direct and
iterative methods for linear systems, eigenvalue problems, singular value decomposition. In the
second half of the course, the above are used to build iterative methods for nonlinear systems
and for multivariate optimization. Strong emphasis is placed on understanding the advantages,
disadvantages, and limits of applicability for all the covered techniques. Computer programming
is required to test the theoretical concepts throughout the course.

Textbook: A First Course in Numerical Methods by Ascher and Greif

Lecture 1: Introduction (2/1/19)

A problem f is a map f :X→ Y , where X is a vector space of input data with a norm, and Y is
the vector space of solutions with a norm.

Example: for a fixed invertible A, given b, solve Ax= b. Then our solution at b is f(b) =A−1b.

Characterize a problem f

• a problem f at point x is well-conditioned if small changes in the input x result in small
changes in the solution f(x).

• a problem f at point x is ill-conditioned if there exist some small changes in x that result
in large changes in f(x).

absolute condition number:

let δx be small changes in x, and δf = f(x+ δx)−f(x).

κ̂= lim
δ→0

sup
‖δx‖≤δ

‖δf‖
‖δx‖

If f is differentiable, and letting J(x) be the Jacobian of f at x, then

κ̂(f(x)) =
∥∥J(x)

∥∥
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relative condition number if f differentiable at x:

κ(f(x)) =
∥∥J(x)

∥∥∥∥f(x)
∥∥/‖x‖

example: f(x) = x
2 . Then J(x) = 1

2 . Also, we get κ= 1/2
x/2/x = 1

condition number of a matrix:

problem: A is fixed. the problem is to compute the matrix vector product, so f(x) =Ax. Then we
have that J(x) =A. We have that κ(x) = ‖A‖

‖Ax‖/‖x‖ . We make this a characterstic of just the matrix
by removing dependence on x.

assume that A is invertible. observe that ‖x‖‖Ax‖ ≤
∥∥∥A−1

∥∥∥ then we have that

κ≤‖A‖
∥∥∥A−1

∥∥∥ ∀x

define κ(A) = ‖A‖
∥∥∥A−1

∥∥∥. this number shows up in upper bounds for many types of problems
including:

• fix A, given b, compute the solution to Ax= b.

• fix b, given square, nonsingular A, compute A−1b. note, κ(A) is the actual condition number
of this problem.

thus, we define the condition number of a matrix A as κ(A) =‖A‖
∥∥∥A−1

∥∥∥ and κ(A) =∞ for
non-invertible square A. equivalently, we have κ(A) = σ1

σn
, interpreted as ratio of largest axis of

ellipse to smallest axis, where the ellipse is the image of the n−dimensional unit ball under A. note
that an orthogonal matrix maps a ball to a ball.

Lecture 2: Floating Point Numbers (2/4)

Can only represent finitely many real numbers. Will have

• Smallest number

• Largest number

• Gaps between the numbers that can be represented

Now, our representation can have any base. We fix base 2. Our number systems will be completely
characterized by parameters

• t — precision

• L — smallest exponent

• U — largest exponent
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A floating point number system is the set of all numbers (plus 0) of the form

±1.d1d2 · · ·dt−1×2e

di ∈ {0,1}
e ∈ [L,U ]

note that
1.d1d2 · · ·dt−1 = 1 + d1

2 + d2
4 + . . .+ dt−1

2t−1

1 is fixed for uniqueness of representation. For instance in base 10 we have 0.12×103 = 1.2×102

Implications:

• distance between floating point numbers is only constant for a fixed e

• there are the same number of floating point numbers in [1,2) and [2,4)

Characterized by machine precision, denoted εmachine or µ.

µ= 1
221−t = 2−t

which is half the distance from 1 to the next closed floating point number greater than 1.

IEEE 754 double. Uses 64 bits per floating point number. Has 1 bit sign, 52 bits for mantissa at
t= 53, and 11 bits for the exponent. Contrains e∈ [−1022,1023]. Note 211 = 2048 so two exponents
are reserved.

µ≈ 10−16. Our numbers lie in the range [10−308,10308], but numbers at the higher end are about
10292 apart from each other.

An exponent of all 1 or all 0 designate special objects. For instance, used to represent 0, NaN, ±∞,
subnormal numbers.

We choose our mathematical model for floating point:

• ignore underflow and overflow, i.e. trying to represent too small or too big a number

• representation: for all x ∈ R, there exists an ε with |ε| ≤ µ such that fl(x) = x(1 + ε), where
fl(x) is the nearest floating point number to x.

• arithmetic: for all floating point numbers a and b, there exists an ε with |ε| < µ such that
fl(a ∗ ∗b) is equal to (a ∗ ∗b)(1 + ε) ∈ R, where ∗∗ is any of the four +,−, ·,/ arithmetic
operations.

When subtracting two nearby floating pont numbers to get a much smaller answer, we lose preci-
sion/ significant digits. For instance, consider weighing a captain of a boat by weighing a boat and
then weighing the captain with the boat then subtracting. Big numbers to small numbers make
you lose precision. Called catastrophic cancellation.
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Lecture 3: Stability (2/6)

An algorithm for f is a map f̃ :X →X.

• at the very least, converts x to floating point.

• run algorithm f(x)

• can only output floating point numbers

We want an algorithm to be accurate.

absolute accuracy
∥∥∥f̃(x)−f(x)

∥∥∥
relative accuracy

∥∥∥f̃(x)−f(x)
∥∥∥∥∥f(x)

∥∥
we may hope to have an accurate algorithm, or one in which∥∥∥f̃(x)−f(x)

∥∥∥∥∥f(x)
∥∥ =O(µ) as µ→ 0 for all x ∈X

where g is O(µ) if g ≤ Cµ for some C > 0, and all small enough µ.

This is too much to ask for in ill conditioned problems. Instead, we ask for stability.

f̃ is stable for a problem f if for all x ∈X, we have∥∥∥f̃(x)−f(x̃)
∥∥∥∥∥f(x̃)

∥∥ = o(µ) as µ→ 0

for some x̃ with ‖x̃−x‖
x

= o(µ) as µ→ 0

an algorithm f̃ is backwards stable for a problem f if for all x∈X, we have f̃(x) = f(x̃) for some
x̃ with ‖x̃−x‖‖x‖ = o(µ) as µ→ 0.

For instance, computing uvT is not backwards stable in the sense that algorithms to compute if
will lead to outputs with not exactly rank 1.

o(µ) constant can depend on m,n etc. It is often benign such as n,mn,n2. However, in bad cases,
the constant can be exponenetial 2n in the problem size.

Example: subtraction is backwards stable

We have data x1,x2 ∈ R. f(x1,x2) = x1−x2.

f̃(x1,x2) = fl(x1)	fl(x2) where 	 is the floating point subtraction.

We know we have |ε1|, |ε2|< µ such that fl(xi) = xi(1 + εi).
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Thus, we have for fixed x1,x2 that f̃(x1,x2) = x1(1 + ε1)	x2(1 + ε2). Moreover, we have that ε3
with |ε3| ≤ µ such that

f̃(x1,x2) = [x1(1 + ε1)−x2(1 + ε2)](1 + ε3)
= x1(1 + ε3 + ε1 + ε1ε3)−x2(1 + ε2 + ε3 + ε2ε3)
= x1(1 + ε4)−x2(1 + ε5) we define

We have that ε4 = o(µ) and ε5 = o(µ). Thus, we have that

f̃(x1,x2) = f(x1(1 + ε4),x2(1 + ε5))

Now, we show that backwards stability =⇒ accuracy.

Suppose we use a backwards stable f̃ to solve f with condition number κ(x). Then∥∥∥f̃(x)−f(x)
∥∥∥∥∥f(x)

∥∥ = o(κ(x)µ)

proof sketch: ∥∥∥f̃(x)−f(x)
∥∥∥∥∥f(x)

∥∥ =
∥∥f(x̃)−f(x)

∥∥∥∥f(x)
∥∥ by backwards stability, for some x̃

κ(x)≈ ‖δf‖
‖f‖

/
‖δx‖
‖x‖

note that x̃ has ‖x̃−x‖‖x‖ = o(µ). Thus, we have the two forms in the κ expression above.

Lecture 4: LU Solve (2/8)

We focus on the problem of finding x ∈ Rn satisfying

Ax= b

where A ∈Mn(R) is full rank, and b ∈ Rn.

Algorithm 1 Backward substitution
for k = n :−1 : 1 do

xk =
bk−
∑n

j=k+1Ak,jxj

Ak,k

end for

has cost
∑n
k=1(2(n−k) + 1) =O(n2).

Backwards substitution is backwards stable. Given R,b and a computed x̃, we have x̃ satisfies
(R+ δR)x̃= b. For some triangular δR with ‖δR‖‖R‖ =O(µ)

Now, given A, we want to find L and U such that A= LU . Add permutation matrix P later. We
want to construct

Ln−1 · · ·L1A= U
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Algorithm 2 LU Factorization
for k = 1 : n−1 do

for r = k+ 1 : n do
A[r,k] = A[r,k]

Ak,k

A[r,r] =A[r,r]−A[r,k]A[k,r]
end for

end for

Lk = I− lkeTk then
Lkxk = xk− lk(xk)k

nicely, L−1
k = I+ lke

T
k and L−1

k L−1
k+1 = I+ lke

T
k + lk+1e

T
k+1.

Loops over columns, choose rows that matter, compute lk, and then apply Lk. At the end of this
algorithm, A has elements of L in lower triangle, and U on diagonal and upper triangle.

Lecture 5: LU (2/11)

Equivalent algorithm,

Algorithm 3 Equivalent LU algorithm
U =A,L= I
for k = 1 : n−1 do

for j = k+ 1 : n do
ljk = uj,k

uk,k

u[j,k : n] = u[j,k : n]− lj,k ·u[k,k : n]
end for

end for

only use upper triangular part of U after this algorithm is done, and essentially set the rest to zero
(only use upper triangle to solve Ax= b).

Cost of LU factorization:
n∑
k=1

n∑
j=k+1

[1 + 2(n−k+ 1)]≈
n∑
k=1

(n−k)2

=O(n3)

there is no LU decomposition of
(

0 1
1 0

)
. likewise, do not want to divide by small ε in

(
ε 1
1 0

)
Thus, we use pivoting.

LU with partial pivoting, ensure that all entries of L have |Li,j | ≤ 1.

Say |xi,k| ≥ |xj,k| for k ≤ j ≤ n. Then Pk swaps rows k and i. Then proceed as before, and compute
Lk to zero out rows. Note that all entries of Lk are at most 1, since the largest entry in the column
is on the diagonal and hence the divisor.
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We compute permutation matrices P1, . . .Pn−1 and lower triangular matrices L1, . . . ,Ln−1 such that

Ln−1Pn−1 · · ·L2P2L1P1A= U

let L′i be Li with entries in column i below the diagonal permuted:

L′i = Pn−1 · · ·Pi+1LiPP
T
i+1 · · ·P Tn−1

then we have
L′n−1 · · ·L′1Pn−1 · · ·P1A= U

let P̃i = Pn−1 · · ·Pi+1. Then we have that L′i = P̃iLiP̃
T
i . Note that P̃i only permutes the i+ 1 and

above rows and columns, and then multiplying by its inverse on the right inverts these changes on
the i+ 1 and above rows and columns in some sense.

Thus, we get that
PA= LU

Algorithm:

Algorithm 4 LU with Partial Pivoting
U =A,L= I,p= 1 : n,p(i) = i
for k = 1 : n−1 do

i= argmaxi|ui,k|
swap u[k,k : n] and u[i,k : n]
swap L[k,1 : k−1] and L[i,1 : k−1]
swap p[i] and p[j]
for j = k+ 1 : n do

lj,k = uj,k

uk,k

u[j,k : n] = u[j,k : n]− lj,ku[j,k : n]
end for

end for

Lecture 6: LU Stability, Cholesky (2/13)

Given A nonsingular, with an LU facotrization without pivoting, if the process does not break down
and our floating point axioms hold, then the computed L̃, Ũ satisfy

L̃Ũ =A+ δA

for some δA with
‖δA‖
‖L‖‖U‖

=O(µ)

note this is not quite a backwards stability result, since the denominator needs to be the norm of
the actual input A, not the multiplied L and U norms. This bound is tight in some sense, so that
LU factorization is not backwards stable.

For LU with partial pivoting, given A compute P̃ , L̃, Ũ . Then

L̃Ũ = P̃A+ δA
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‖δA‖
‖A‖

=O(ρµ)

ρ= maxi,j |ui,j |
max i, j |ai,j |

furthermore, if |li,j |< 1, i, j, then for small enough µ, P̃ = P . In other words, fif there are no ”ties”
(each column has unique largest element in bottom half), then for enough precision, we have the
computed permuation matrix is the exact permutation matrix.

Note, ρ can be 2n−1. So LU with partial pivoting is mathematically backwards stable, but ρ can
be very big.

Now, suppose A is symmetric positive definite. Could compute A= LU .

Theorem 1 (Existence of Cholesky factorization). Every symmetric positive definite A has a
unique Cholesky factorization. We can find a R upper triangular with Ri,i > 0 such that

A=RTR

Proof. If A is 1×1, then the Cholesky factorization is the positive square root R= +
√
A1,1

Assume we can construct a Cholesky factorization of size n−1×n−1. Let A be n×n spd. Write
A as

A=
(
a1,1 wT

w K

)
w ∈ Rn−1, and K ∈ Rn−1×n−1. We can write A as

A=
( √

a1,1
w/
√
a1,1 I

)1
K− wwT

a1,1

(√a1,1 wT /
√
a1,1

I

)

Now, we know that K is symmetric positive definite since A is. We show that K− wwT

a1,1
is positive

definite (obviously symmetric). Call the left matrix above RT1 , and thus the right R1. Then the
middle matrix is R−T1 AR−1

1 . Note that for x 6= 0

xTR−T1 AR−1
1 x > 0

since A is positive definite, and R−1
1 x 6= 0 since R1 is nonsingular. This implies that the middle

matrix is positive definite, so that the lower right submatrix is indeed positive definite. We factor
K− wwT

√
a1,1

= R̃T R̃. Then we have

A=
( √

a1,1
w/
√
a1,1 I

)(
1

R̃T

)(
1

R̃

)(√
a1,1 wT /

√
a1,1

I

)

So that by defining RT =
( √

a1,1
w/
√
a1,1 R̃T

)
, we know that R is upper triangular with positive

diagonal entries and A=RTR.

In algorithm form, given A spd,

The cost of this is O(n3), but about 1
2 the work of LU as seen by working out the constants.
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Algorithm 5 Cholesky Factorization
R=A
for k = 1 : n do

for j = k+ 1 : n do
R[j,j : n] =R[j,j : n]−R[k,j : n] rk,j

rk,k

end for
R[k,k : n] =R[k,k : n]/√rk,k

end for
only use the upper triangular part of R.

‖R‖2 =‖A‖1/22 prove by SVD

stability: given A spd, compute cholesky with floating point axioms. Then the computed R̃
satisfies

R̃T R̃=A+ δA

‖δA‖
‖A‖

=O(µ)

so that cholesky factorization is backwards stable.

Note that the best we can say in forward error analysis, about R̃−R, is∥∥∥R̃−R∥∥∥
‖R‖

=O(κ(A)µ)

so can be far from true factorized R if A is ill-conditioned.

Lecture 7: Least Squares (2/15)

Solving Ax= b for A n×m and n >m and A full column rank:

min
x∈Rn

1
2‖b−Ax‖

2
2

example: say given n data points (xi,yi),xi,yi ∈ R with xi distinct. Want to find coefficients αi
such that f(x) = α1 +α2x+ . . .+αnx

n−1 exactly interpolates the data points (f(xi) = yi). Can be
solved since is a square non-singular system.

Perhaps better: for some fixed m< n, find coefficients c1, . . . , cm such that the polynomial p(x) =
c1 + c2x+ . . .+ cmx

m−1 has p(xi)≈ yi. In particular, want

min
c1,...,cm

1
2

n∑
i=1
|p(xi)−yi|2

let A be the Vandermonde matrix

A=


1 x1 x2

1 . . . xm−1
1

1 x2 x2
2 . . . xm−1

2
...

...
... . . .

1 xn x2
n . . . xm−1

n
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Then the minimization problem is equivalent to solving

min
c∈Rm

1
2‖y−Ac‖

2
2

Aside: projectors. A projector is a square matrix P that satisfies P 2 = P . Say v ∈ imP . Then
there exists x such that v = Px. Hence, we have Pv = PPx = Px = v (projectors do not change
vectors in their own range).

There are oblique projectors and orthogonal projector. We will only concern ourselves with orthog-
onal projectors. A projector is orthogonal if P = P T . Note that these are not orthogonal matrices.

Orthogonal projectors project vectors V onto a subspace S1 = imP along a direction in a subspace
S2 = kerP that is orthogonal to S1. We have that Pv is the closest point in imP to v in ‖·‖2.
Moreover, we have that v−Pv ∈ kerP , so that v−Pv is orthogonal to Pv.

For any projector P , define its complementary projector I−P , which is the orthogonal projector
onto kerP . Then we can decompose any vector v as

v = v1 +v2 = Pv+ (I−p)v

where v1 ∈ imP and v2 ∈ kerP are orthogonal.

Now, lets say we have a subspace S1 of dimension k and want to build a projector onto it. Given
vectors q1, . . . , qk orthonormal basis for S1, let Q =

(
q1 . . . qk

)
. Then the unique orthogonal

projector PS1 onto S1 can be written as PS1 = QQT . Note that this is the SVD PS1 = QIQT , so
that PS1 has rank k. The product with any vector Q(QT v) has information.

Can restate minx 1
2‖b−Ax‖

2
2 as find z ∈ imA closest to b. Then find x such that Ax= z (which has

a solution since z ∈ imA).

Thus, we want to find the projection Pb of b onto imA. The residual r= b−Ax is, if P an orthogonal
projector, is orthogonal to imA.

Theorem 2. Given A, an n×m full column rank matrix, with n≥m, and b ∈ Rn, then a vector
x minimizes ‖r‖22 =‖b−Ax‖22 if and only if

r ⊥ imA ⇐⇒ AT r = 0

or, equivalently,
ATAx=AT b

or, equivalently,
Pb=Ax P an orthogonal projector onto imA

Can solve normal equations with cholesky. Costs about m2n+ 1
3m

3. Drawback is in conditioning:

κ(ATA) = κ(A)2

Lecture 8: QR factorizations (2/18)

A QR factorization is to find an orthongal Q and an upper-triangular R such that A=QR.

Note: for all square n×n A, there exists an orthogonal matrix Q and an upper triangular matrix
R such that A=QR.
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• if A is non-singular, then so is R

• almost unique, is unique if ri,i ≥ 0

• easy to solve Ax= b with A=QR

y =QT b

Rx= y

Now, for n >m, and for all A ∈ Rn×m, there exists an orthogonal Q ∈ Rn×n and upper triangular
R1 ∈ Rm×m such that

A=QR R ∈ Rn×m R=
(
R1
0

)

Now, letting Q=
(
Q1 Q2

)
, where Q1 ∈ Rn×m, so that

A=
(
Q1 Q2

)(R1
0

)
=Q1R1

Thus, given any A ∈ Rm×m where n > m, then there exists Q ∈ Rn×m with orthonormal columns
and an upper triangular R ∈ Rm×m such that A=QR.

Note we have imA= imQ. Thus, columns of Q are an orthonormal basis for the image of A.

Now, suppose that A=QR. Then we have by multiplication that

a1 = r1,1q1

a2 = r1,2q1 + r2,2q2
...

...

in words, for all j ∈ [m], we have span(a1, . . . ,aj) = span(q1, . . . , qj)

we can set

q1 = a1
‖a1‖

v2 = a2− (qT1 a2)q1 removes part of a2 in direction of q1

q2 = v2
‖v2‖

...
...

vj = aj− (qT1 aj)q1− . . .− (qTj−1aj)qj−1

qj = vj∥∥vj∥∥
...

...

Gram-Schmidt algorithm, given A ∈ Rn×m with full column rank,

is good mathematically but can be numerically problematic.
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Algorithm 6 Gram-Schmidt
for j = 1, . . . ,m do

vj = aj
for i= 1 : j−1 do

ri,j = qTi aj
vj = vj− ri,jqi

end for
rj,j =

∥∥vj∥∥2
qj = vj

rj,j

end for

Let Pi = qiq
T
i then

vj = Iaj−P1aj− . . .−Pj−1aj

vj =
(
I−

(
q1 . . . qj−1

)
qT1
...

qTj−1

)aj
In modified Gram-Schmidt, we do not leave all of the projectors to the end.

vj = (I−Pj−1)
[
· · · [(I−P1)aj ] · · ·

]
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Algorithm 7 Modified Gram-Schmidt
for i= 1 :m do

vi = ai
end for
for i= 1 :m do

ri,i =
∥∥vi,i∥∥2

qi = vi
ri,i

for j = i+ 1 : n do
ri,j = qTi vj
vj = vj− ri,jqi

end for
end for

Lecture 9: 2-20-19

Can view Gram-Schmidt or Modified-Gram-Schmidt as building R1, . . . ,Rm such that

AR1 · · ·Rm =Q

so the process is like building R to make A orthogonal.

Today, we will instead cook-up a sequence of orthogonal matrices Q1, . . . ,Qm such that

Q1 · · ·QmA=R

like in LU, but now the transformations are restricted to orthogonal ones and not lower-triangular
ones. Also, A can be rectangular now.

We use Q to reduce A to R one column at a time.

A=


× × ×
× × ×
× × ×
× × ×

→Q1A=


× × ×
0 × ×
0 × ×
0 × ×

→Q2Q1A=


× × ×
0 × ×
0 0 ×
0 0 ×

→Q3Q2Q1A=


× × ×
0 × ×
0 0 ×
0 0 0


Q2 =

(
1

F2

)
Q3 =

(
I

F3

)
where Q1, Q2, and Q3 are orthogonal.

Thus, we have

Qk =
(
I

Fk

)
where I is (k− 1)× (k− 1), and Fk is (n− k+ 1)× (n− k+ 1). We want Fk such that for some

vector y ∈ Rn−k+1, we have Fk y =


×
0
...
0
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Thus, we have a subtask. For y ∈ Rn, construct an orthogonal n×n matrix F such that Fy =
±‖y‖2 e1. Geometrically, want to reflect/ rotate y onto ‖y‖e1 on the first axis. Rotation is hard,
so we reflect.

We want to reflect over the plane orthogonal to v =‖y‖e1−y. We have that F = I−2vvT

vT v
achieve

this goal. Fy = y−2(vvT

vT v
y).

Can have catastrophic cancellation in making v if y is close to ±‖y‖e1. Thus, we can take the sign
to be the one who makes ±‖y‖e1 further from y.

These F are called Householder reflectors.

Thus, given y, compute v = sign(y1)‖y‖e1 +y. Then F = I−2vvT

vT v
satisfies Fy =


±‖y‖2

0
...
0


We can compute the product of F with y in O(n) time, so we do not really need to form F . We
just keep the v.

Algorithm 8 QR Factorization
Given A ∈ Rn×m
for k = 1, . . . ,m do

x=A[k : n,k]
vk = sign(x1)‖x‖2 e1 +x
vk = vk

‖vk‖2

A[k : n,k :m] =A[k : n,k :m]−2vk(vTk A[k : n,k :m])
end for
A contains R, and Qk =

(
Ik−1,k−1

I−2vkvTk

)

At the end, get Qm · · ·Q1A=R, so that A=Q1 · · ·QmR, since Qk is symmetric, and Q=Q1 · · ·Qm.

Lecture 10: 2-22-19

Above Householder QR costs O(nm2). For square matrix, asymptotically same cost as LU, but in
practice somewhat slower. Same complexity as Gram-Schmidt and Modified Gram-Schmidt.

Often do not need to form the actual matrix Q. Thus, we have algorithms to apply Q and/or QT .

Algorithm 9 Compute QT b
for k = 1, . . . ,m do

b[k : n] = b[k : n]−2vk(vTk b[k : n])
end for

If we want to compute Q[1 :m]T b, can just look at first m entries after using above algorithm.

If only want to compute Q[:,1 :m] ·y, put y at top and apply above by having x=
(
y
0

)

14



Algorithm 10 Compute Qx
for k =m,m−1, . . . ,1 do

x[k : n] = x[k : n]−2vk(vTk x[k : n])
end for

Suppose given Q ∈ Rn×m and R ∈ Rm×m such that A = QR. Assume A full column rank so R is
nonsingular.

Recall x solves minx 1
2‖b−Ax‖

2
2 if and only if Pb=Ax, where P orthogonal projector onto imA.

Q’s columns are an orthonormal basis for the columns of A. Thus, P = QQT 4 is an orthogonal
projector onto imA. Hence, solution x satisfies QQT b=Ax. We write

QQT b=QRx

Q(QT b−Rx) = 0
⇐⇒ QT b−Rx= 0 Q has trivial kernel

⇐⇒ QT b=Rx

Solving for x is easy, since we have an m×m upper triangular system that we can solve by back
sub.

Thus, to solve the least squares problem, we have a routine: decompose A = QR, then compute
QT b, then solve QT b=Rx for x.

Has cost O(nm2)+O(nm)+O(m2), Same asymptotically but somewhat slower than normal equa-
tions. However, much more stable than normal equations.

Can also solve least squares given a reduced SVD of A, A = UΣV T . Can be a better choice that
QR for ill-conditioned A. Note SVD algorithms are iterative, and not direct methods.

Let’s talk about sensitivity of the least squares problems to perturbations in A and b. Suppose we
have A with n≥m, and b. Call the projection of b onto imA as y =Ax.

Define
κ(A) = σ1

σm

θ = cos−1 ‖y‖
‖b‖

η = ‖A‖‖x‖
‖Ax‖

Have some bounds: 1≤ κ(A) 0≤ θ ≤ π

2 1≤ η ≤ κ(A)

We have input/data A,b and solutions x,y. Fix A full column rank, and b.

Here we have 2-norm relative condition numbers for sensitivity of x and y with respect to pertur-
bations in A and b.

y x
b 1

cosθ
κ(A)
η cosθ

A κ(A)
cosθ κ(A) + κ(A)2 tanθ

η

means how does y and x change when you change b and A.

15



Lecture 11: 2-27-19: Givens rotations

Suppose we have

A=


× 0 . . . 0
0 × . . .
...

... . . .
× 0 . . . ×


We only need to zero out one entry, but householder could cause lots of more nonzeros to be made.

Consider a 2×2 matrix G and vector x=
(
x1
x2

)
Want to construct G given x such that

Gx=
(
‖x‖

0

)

Can accomplish this with

G=
(
c −s
s c

)
where c= cos(θ) and s= sin(θ). We let

s= −x2√
x2

1 +x2
2

c= x1√
x2

1 +x2
2

Then Gx= ‖x‖0 .

Now, to use it for constructing QR, consider

Gi,j(x) =



1 0 0 . . . 0 . . . 0
...

... . . . . . . . . . ...
...

0 0 1 . . . 0 . . . 0
0 0 0 c . . . −s . . . 0
...

...
... . . . . . . . . . . . .

0 0 0 s . . . c . . . 0
...

...
... . . . . . . . . . . . .

0 0 0 0 . . . 0 . . . 1


where the nonzeros are in the i and j rows and columns.

applying Gi,j(x) to A:

Gi,j(x)A=


A[k, :] for k 6= i,k 6= jA[i, :]
A[j, :]

 =G(x)

A[i, :]
A[j, :]


Only may introduce nonzeros in upper triangle.
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Too many matrices I’m not tryna type all of them.

In matrix of above example, let Q1 =G1,n

(
A1,1
An,1

)
. When solving minx 1

2‖b−Ax‖
2
2, if κ(A) is large

then small perturbations in b can cause large perturbations in x.

Consider b as data, and A as factors/model, and x are coefficients. If A is ill-conditioned, there are
many approximately equally good models. For these ill-conditioned problems, don’t only minimize
1
2‖b−Ax‖

2
2, but also look for a simple model.

As an example, consider Tikhonov regularization/ ridge regression/ l2 regularization:

min
x

1
2‖b−Ax‖

2
2 +λ‖x‖22

for some λ > 0. We can solve this as a bigger least squares problem.

Can change the norm applied to x, for Lasso

min
x

1
2‖b−Ax‖

2
2 +λ‖x‖21

gives sparser solutions as λ increases. However, do not have the tools to solve this without more
optimization techniques.

Lecture 12: 3-1-19

Now we are solving Av = λv. Given a matrix A ∈ Rn×n that is symmetric, A = AT , we want to
find real λi ∈ R and associated nonzero vectors vi ∈ Rn such that Avi = λivi.

We assume A= AT so that the spectral theorem applies. We will often assume some or all of the
eigenvalues are distinct. For instance, we may assume |λ1|> |λ2| ≥ . . .≥ |λn|.

To see why we may make that assumption, suppose we have λ1 = λ2. Then let A have an eigende-
composition

A=
(
V1 V2

)(λ1I2×2
Λ2

)(
V T

1
V T

1

)
where V1 is n×2. Then we can replace V1 with V1Q for any orthogonal Q and then we have

A=
(
V1Q V2

)(λ1I2×2
Λ2

)(
QTV T

1
V T

1

)
so that there are no unique unit eigenvectors.

We do not solve for eigenvalues by finding roots of the characteristic polynomial det(A−xI). In
fact, we sometimes reverse this problem. Given a monic polynomial p(x) = xn+an−1x

n−1 + . . .+a0,
the roots are the eigenvalues of

A=


0 0 . . . 0 −a0
1 0 . . . 0 −a1
...

... . . . . . . ...
0 0 . . . 1 −an−1
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we also know that there is no closed-form solution for the roots of a polynomial of degree ≥ 5, so
that there is also no closed-form solution for the eigenvalues of an arbitrary matrix of size n ≥ 5.
Hence, we have that all eigenvalue/vector algorithms must be iterative. In other words, we have to
consider a sequence of iterates q(k) ∈ Rn such that

q(k)→ vi as k→∞

The Rayleigh Quotient for a matrix A is a function rA : Rn→ R given by

rA(x) = xTAx

xTx

note that if vi is an eigenvector with eigenvalue λi, we have rA(vi) = λi. This function has a lot of
nice properties.

Consider A= V ΛV T . Then we have Ak = V ΛkV T =
∑n
i=1λ

k
i viv

T
i

From this idea, we have power iteration. Given A=AT and q(0) with unit 2−norm:

Algorithm 11 Power Iteration
for k = 1,2, . . . do

w =Aq(k−1)

q(k) = w
‖w‖2

λ(k) = q(k)TAq(k)

check for convergence
end for

Theorem 3. If |λ1|> |λ2| ≥ . . .≥ |λn|, and if vTi q(0) 6= 0, then the iterates q(k) from power iteration
satisfy ∥∥∥q(k)±v1

∥∥∥=O
(∣∣∣λ2
λ1

∣∣∣k)
∥∥∥λ(k)−λ1

∥∥∥=O
(∣∣∣∣λ2
λ1

∣∣∣∣2k)
Write q(0) =

∑n
i=1αivi, where vi are the eigenvectors, which is possible since A symmetric implies

that there is an eigenbasis. Since vT1 q(0) 6= 0, we have α1 6= 0. Notice that

q(k) = ckA
kq(0)

= ck

n∑
i=1

αiA
kvi

= ck

n∑
i=1

λki αivi

then we can write q(k) = ckλ
k
1α1

[
v1 +

∑k
i=2

αi
α1

(
λi
λ1

)k]
. Of the eigenvalue fractions, λ2

λ1
converges to

zero the quickest. Note that ck normalizes Akq(0), so that

c−1
k =

√√√√ n∑
i=1

α2
iλ

2k
i = α1λ

k
1

√√√√1 +
n∑
i=2

(αi
α1

)2(λi
λ1

)2k
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so that

q(k) =
(
v1 +

k∑
i=2

αi
α1

(λi
λ1

)k)/√√√√1 +
n∑
i=2

(αi
α1

)2(λi
λ1

)2k

Lecture 13: 3-4-19

Now, want to find other eigenvalues λi of A, besides just the one of largest magnitude. Given A,
want to find a transform of A, f(A), such that f(A)’s largest eigenvalue is related to the eigenvalue
of A closest to µ.

Consider
A−1 = (V ΛV T )−1 = V Λ−1V T

then, if λn is eigenvalue of A of small magnitude, then 1
λn

is eigenvalue of A−1 of largest magnitude.
Moreover, eigenvectors stay the same.

Consider A−γI, for γ ∈ R. Then we have

A−γI = V ΛV T −γV V T

A−γI = V (Λ−γI)V T

in particular, each eigenvalue of A is shifted by γ, and the eigenvectors are unchanged.

Now, if we look at (A−µI)−1, then we have that the eigenvalues are 1
λi−µ

Shifted inverse iteration: Given A,A=AT ,µ

Algorithm 12 Shifted inverse iteration
pick q(0) with

∥∥∥q(0)
∥∥∥= 1

for k = 1,2, . . . do
solve (A−µI)w = q(k−1) for w (equiv to applying inverse to q(k−1))
q(k) = w

‖w‖
λ(k) = q(k)TAq(k)

check for convergence
end for

in exact analogy with the above theorem for the power method,

Theorem 4 (Convergence of shifted inverse iteration). let λJ be the eigenvalue of A closest to µ,
and assume λl is the next closest to µ with |µ−λJ | < |µ−λl| ≤ |µ−λi| for all i 6= J . Then, if
q(0)T vJ 6= 0, then ∥∥∥vJ ± q(k)

∥∥∥=O

(∣∣∣∣∣λj−µλl−µ

∣∣∣∣∣
k)

∥∥∥λ(k)−λJ
∥∥∥=O

(∣∣∣∣∣λj−µλl−µ

∣∣∣∣∣
2k)

note that we our λ(k) become increasing close to λJ , so that we can leverage this for faster conver-
gence
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Algorithm 13 Rayleigh Iteration
λ(0) = q(0)TAq(0)

for k = 1,2, . . . do
solve (A−λ(k−1)I)w = q(k−1) for w (equiv to applying inverse to q(k−1))
q(k) = w

‖w‖
λ(k) = q(k)TAq(k)

check for convergence
end for

Rayleigh iteration: Given A,A=AT and q(0)

note that the system A− λ(k−1)I becomes increasingly ill-conditioned, so that the solutions w
become worse. However, in practice the magnitude of w may be bad, but the direction is fine, so
that the normalized w is close to the true one.

Theorem 5 (Convergence of Rayleigh Iteration). For symmetric A, Rayleigh iteration converges
for a.e. q(0). When it converges, there exists some J ∈ {1, . . . ,n} such that∥∥∥q(k+1)±vJ

∥∥∥=O
(∥∥∥q(k)±vJ

∥∥∥3

2

)
as k→∞∥∥∥λ(k+1)−λJ

∥∥∥=O
(
|λ(k)−λJ |3

)
as k→∞

there is a catch—we do not know which J , that is, which eigenpair, we converge to.

Lecture 14: 3-6-19

Cost of the eigenvalue algorithms. No longer a fixed number of arithmetic operations done.

Cost per iteration of power iteration is O(n2) due to the matrix-vector product.

For shifted inverse, we are solving a linear system at each iteration. Note that the matrix is the
constant, A−µI at each iteration, so that we can intially factor A−µI with an upfront cost of
O(n3), and then per iteration have a O(n2) time to solve the linear system with the factorization.

For Rayleigh iteration, the matrix changes at each step, so cannot just factor at start. Thus, it has
a per iteration cost of O(n3).

Now, we consider convergence

(q(k),λ(k)) is the eigenvector/value estimate at step k. We know that

(q(k),λ(k))→ (vJ ,λJ) as k→∞

Given q(k),λ(k), see if it is an approximate eigenvector/value pair by checking∥∥∥Aq(k)−λ(k)q(k)
∥∥∥

2
< ε where ε a given accuracy

Theorem 6 (Eigenvalue Nearness). For symmetric A, if
∥∥∥Aq(k)−λ(k)q(k)

∥∥∥
2
≤ ε, then there exists

λJ ∈ Λ(A) such that
|λ(k)−λJ | ≤

√
2ε
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Can also say something about q(k), because q(k),λ(k) are an exact eigenpair of

A−eq(k)T where e=Aq(k)−λ(k)q(k)

this is because

(A−eq(k)T )q(k) = e+λ(k)q(k)−e
= λ(k)q(k)

thus, we have a backwards-stability-resembling result, where q(k) is an eigenvector of a matrix that
is close to A. Note that

∥∥∥e− q(k)T
∥∥∥

2
≤ ε.

Now, we can trade up front cost for per-iteration cost. We consider the pipeline of putting the
matrix A through some fixed work which makes it into a nicer to work with Â. Then we feed Â
into an iterative algorithm, and finally convert the eigenvalues and eigenvectors of Â into those of
A.

Given A symmetric, then for any orthogonal Q, we have an orthogonal similarity tranform, where
QTAQ has the same eigenvalues of A.

QTAQ=QTV DV TQ= UDUT

so the eigenvalues of A are the columns of V =QU .

Cannot make Â diagonal, so we pick Q such that Â is tridiagonal. Say T is an n×n symmetric
tridiagonal matrix, then we can solve Tx= b in O(n) time.

Thus, we can reduce symmetric A to tridiagonal form in O(n3) time with Householder.

Lecture 15: 3-8-19

We will work to reduce our matrices A to tridiagonal form by orthogonal similarity transforms.
Know how to reduce to upper triangular by Householder, but this is too greedy.


× × . . . ×
× × . . . ×
... . . . . . . ...
× × . . . ×

→Q1


× × . . . ×
0 × . . . ×
... . . . . . . ...
0 × . . . ×

→QT
1


× × . . . ×
× × . . . ×
... . . . . . . ...
× × . . . ×



[
α aT1
a1 A2,2

]
→

[
1

Q1

] [
α aT1

±‖a1‖e1 Q1A2,2

]
→

[
1

QT1

] [
α ±‖a1‖eT1

±‖a1‖e1 Q1A2,2Q
T
1

]

note that they key is that we do not touch the upper left element, so that we know that the row is
zeroed out as well after applying the transpose from the right.
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Algorithm 14 Reducing symmetric A to tridiagonal form
for k = 1,2, . . . do

x=A[k+ 1 : n,k]
vk = sign(x1)‖x‖2 e1 +x
vk = vk

‖xk‖
A[k+ 1 : n,k : n] =A[k+ 1 : n,k : n]−2vk(vTk A[k+ 1 : n,k : n])
A[k : n,k+ 1 : n] =A[k : n,k+ 1 : n]−2(A[k : n,k+ 1 : n]vk)vTk

end for

Note householder reflector symmetric. Costs O(n3) operations. Once we are done, the tridiagonal
part of A contains Â=QAQT . Given eigenvectors of Â, need to use Q to get eigenvectors of A.

Â=Qn−2 · · ·Q1AQ
T
1 · · ·QTn−2

Qk =
[
Ik×k

I−2vkvTk

]

We will now make progress towards the QR algorithm to find all eigenvalues/vectors of A.

Consider a ”block” power iteration

for k = 1,2, . . . do
W =AQk−1
normalize columns of W , call that Qk

end for

note that this does not give us anything more, since the columns of the Qk will tend towards the
dominant eigenvector. However, we can enforce conditions of orthogonality, since we know that the
eigenvectors of a symmetric matrix are orthogonal.

Simultaneous iteration, given A symmetric and Q(0) ∈ Rn×k orthonormal columns, where k < n

for k = 1,2, . . . do
W =AQ(k−1)

W =Q(k)R reduced QR factorization
end for

if |λk|> |λk+1|, then span(Q(k))→ span(v1, . . . ,vk) as O
(∣∣∣λk+1

λk

∣∣∣k )

Lecture 16: 3-11-19

Assume |λ1| > |λ2| > .. . > |λk| > |λk+1| ≥ . . . ≥ 0. And a mild condition on V T
1 Q

(0), where V1 =[
v1 . . . vk

]
[non-singular leading minors] (analogous to initial conditions on power iteration).

Then

span(Q(l))→ span(V1) at rate O
(∣∣∣∣∣λk+1

λk

∣∣∣∣∣
l)
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=⇒
∥∥∥Q(l)Q(l)T −V1V

T
1

∥∥∥
2
→ 0

if the norm here is 0, then Q(l) = V1U for some orthogonal U (because orthogonal projectors

are unique . . . ) Then Q(l)TAQ(l) = UTΛ1U , where A =
[
V1 V2

][Λ1
Λ2

][
V T

1
V T

2

]
. Thus, we can

compute the eigenvectors/ values of Â=Q(l)TAQ(l), so that we have eigenvalues of A and a U such
that Q(l)U are eigenvectors. Important, Â is k×k, so it is quicker to compute this stuff.

Now, for convergence, consider AlQ(0). Then we know AlQ(0)e1 ≈ clv1, where cl ∈R. This is a fact
from the convergence of power iteration. Now, consider (I− v1v

T
1 )AlQ(0)e2, which orthogonalizes

against v1. We have AlQ(0)e2 = ĉl
∑n
i=1αiλ

l
ivi. Then we get that the product is equal to

ĉl

n∑
i=2

αiλ
l
ivi = ĉlα2λ

l
2

(
v2 +

n∑
i=3

αi
α2

(λi
λ2

)l
vi
)

Thus, taking QR of AlQ(0) gives information about each eigenvector and eigenvalue.

This implies that a QR factorization of Al is a reasonable way to get eigenvectors as l→∞ if
|λ1| > |λ2| > .. . > |λn| ≥ 0. (like picking Q(0) to be identity). If A is symmetric positive definite,
then its eigendecomposition is its SVD, so that Al = V ΣlV T implies κ(Al) = κ(A)l. This is bad.
Recall for instance that the forward error depends on the condition number.

Algorithm 15 QR Algorithm
given A=AT

A(0) =Q(0)TAQ(0) reduce to tridiagonal O(n3)
for l = 1,2, . . . do

Q(l)R(l) =A(l−1) QR factorization O(n)
A(l) =R(l)Q(l) O(n)

end for

Claim: with mild conditions on V (same as before, non-singular V [1 : k,1 : k]), and |λ1| > |λ2| >
.. . > |λn| ≥ 0. Then

A(l)→ Λ as l→∞

Q̄=Q(0)Q(1) · · ·Q(l)→ V

note that R(l) = Q(l)TA(l−1 so that A(l) = Q(l)T
A(l−1)Q(l) so that by induction A(l) has the same

eigenvalues of A. Thus, if the iterates A(l) converge to a diagonal matrix, the diagonal elements
must be the eigenvalues of A.

Indeed, A(l) =Q(l)T · · ·Q(0)TAQ(0) · · ·Q(l). Call Q̄=Q(1) · · ·Q(l)

Claim: Q̄ is the Q factor in a QR factorization of (A(0))l = Q̄R̄, which is what we justified was a
good idea before.
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To see this, we have

(A(0))l =A(0) · · ·A(0)

=Q(1)R(1) · · ·Q(1)R(1)

=Q(1)A(1) · · ·A(1)R(1) l−1 copies of A(1)

=Q(1)Q(2)R(2) · · ·Q(2)R(2)R(1)

=Q(1)Q(2)A(2) · · ·A(2)R(2)R(1) l−2 copies of A(2)

...
=Q(1) · · ·Q(l)R(l) · · ·R(1)

so that we are done, Q̄=Q(1) · · ·Q(l), and R̄=R(l) · · ·R(1)

Lecture 17: 3-13-19

Above, in QR iteration, both convergences are at rate

O

(
max

1≤j≤n−1

∣∣∣∣∣λj+1
λj

∣∣∣∣∣
k)

this is the rate for which the slowest columns/ eigenvalues to converge do converge. Different
columns/ eigenvalues converge at different rates.

Practical QR Algorithm, given A symmetric

Algorithm 16 Practical QR Algorithm
given A symmetric
A(0) =Q(0)TAQ(0) tridiagonalize A
for k = 1,2, . . . do

Pick a shift µ(k)

A(k−1)−µ(k)I =Q(k)R(k)

A(k) =R(k)Q(k) +µ(k)I

if any off diagonal element of A(k) is small enough, e.g. |A(k)
j,j+1| ≤ ε(|A

(k)
j,j +A

(k)
j+1,j+1|), then

set A(k)
j+1,j =A

(k)
j,j+1 = 0

=⇒
[
A1 0
0 A2

]
=A(k)

call the QR algorithm on A1 and A2
(Base case 1×1 or 2×2)

end if
end for

a common choice of µ(k) is (A(k−1))n,n. Can check that the transform is still a similarity transform.

Say we have a symmetric matrix A=
[
A1 0
0 A2

]
then we can get the eigenvalues and eigenvectors

of A by computing those of A1 and A2.
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Note it is easy to get the eigenvalues from the recursion (just union of returned eigenvalues).
However, it is somewhat more convoluted to get eigenvectors of A back by undoing all of the
similarity transforms.

Using the shift µ(k) = (A(k−1))n,n lets us relate a column of the matrix Q̄ to running Rayleigh iter-
ation with it. Converges really fricken quickly, looks like constant iterations (like direct methods),
say C iterations to converge per eigenvalue. Then like Cn iterations overall, so overall cost O(Cn2)
to run the iterations, so the most expensive part is usually the O(n3) tridiagonalization. Note that
the time complexity of QR for tridiagonal matrices if O(n) using Givens rotations.

Stability/ accuracy of standard QR iteration Let A∈Rn×n symmetric, and diagonalized by the pure
QR algorithm with out floating point axioms. Let Λ̃ be the computed eigenvalues as a diagonal
matrix. Let Q̃ be the mathematically exact product of the numerically computed householder
reflectors in each QR factorization. Note that mathematical orthogonality is delicate, as numerically
computed matrices are essentially never actually orthogonal. Then

Q̃ÃQ̃T =A+ δA with ‖δA‖
‖A‖

=O(µmachine)

=⇒ |λ̃j−λj |
‖A‖

=O(µ)

note that this means that for λj close in magnitude to ‖A‖, then the statement is approximately a
relative stability statement, so such λj are computed accurately.

Lecture 18: 3-15-19

Our problem is now to find x such that f(x) = 0. We want methods that only require mild
assumptions on f , and only require evaluation of f , and maybe its derivatives f ′, f ′′. We will build
sequences of iterates x(k)→ x∗, where f(x∗) = 0.

For the moment, assume x ∈ R, f : R→ R.

First, we consider different termination criteria:

1. stop when |f(x(k))|< ftol ∈ R+

can fail if the function just gets really close to 0 without achieving it
can also fail if f goes to zero very slowly (flat graph), so that the algorithm terminates

when x(k) is still very far from x∗

2. stop when |x(k+1)−x(k)|< atol (absolute tolerance)

3. stop when |x(k+1)−x(k)|< rtol|xk| (relative tolerance)

4. stop when |x(k+1)−x(k)|< ε|1 +xk| (combines above two)

1. kinda sucks, needs to be used in conjunction with other stuff, such as the other ones listed or by
taking into account derivative information when we have that.
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Bisection

Given f : [a,b]⊆ R→ R find a root in [a,b]. Assume f ∈ C[a,b].

First, check if f(a)f(b)≤ 0. If equals 0 then done. If is negative, then f changes sign in the interval,
so by the intermediate value theorem, there is a zero of f in this interval. Note that we do not
know anything if f(a)f(b)> 0.

Let p = a+b
2 , the midpoint. Evaluate f(p). Then either f(a)f(p) ≤ 0, or f(b)f(p) ≤ 0, so we can

continue recursively on the halved interval.

given a,b,f,tol,

Algorithm 17 Bisection Method
for k = 1,2, . . . ,

⌈
log2

(
b−a
2tol

)⌉
do

p= a+b
2

if f(p)f(a)< 0 then
b= p

else if f(p)f(a)> 0 then
a= p

else
return p

end if
end for
p= a+b

2
return p

Convergence of Bisection

If we want |x∗−p|< tol, then we need b−a
2 2−k < tol. Then (taking logs etc), k =

⌈
log2

(
b−a
2tol

)⌉

Fixed points

f(x) = 0 can be solved by finding x such that g(x) = x for specificallly constructed g. For instance,
a fixed point of g(x) = f(x) +x is also a root of f .

Algorithm to solve g(x) = x (fixed point iteration)

Algorithm 18 Fixed point iteration
pick x(0)

for k = 0,1, . . . do
x(k+1) = g(x(k))
check convergence

end for

Theorem 7 (Fixed point). Let g ∈ C[a,b] with a≤ g(x)≤ b for all x ∈ [a,b] (i.e. g maps interval
back into itself). Then there exists a fixed point x∗ ∈ [a,b] such that g(x∗) = x∗. Furthemore, the

26



fixed point is unique if g is differentiable and there exists some ρ < 1 such that |g′(x)| < ρ for all
x ∈ [a,b].

Proof of existence: let φ(x) = g(x)−x, and prove there is a root of φ(x) ∈ [a,b].

Convergence of fixed point iteration if x∗ is unique

|x(k+1)−x∗|= |g(x(k))−g(x∗)|
≤ ρ|x(k)−x∗|
...
≤ ρk+1|x(0)−x∗|

Lecture 19: 3-18-19

We go from
fixed point iteration→ standard iterations for Ax= b

Want to solve Ax= b, let’s assume A is n×n non-singular. Let A=M −N with M non-singular.
Then we have

Ax= b =⇒ Mx−Nx= b

Mx=Nx+ b

x=M−1(Nx+ b) =: g(x)

We wish to find an x that is a fixed point of the g defined here. This gives us our first iterative
method for solving linear systems

Given A,M,N,x(0), b,

Algorithm 19 Classical iterations/ Stationary iterative methods
for k = 1,2, . . . do

Solve Mx(k) =Nx(k−1) + b
Check convergence

end for

We consider convergence criteria. We have Mx(k) =Nx(k−1) + b. Moreover, we know that Mx∗ =
Nx∗+ b. Subtracting these, we get M(x(k)−x∗) =N(x(k−1)−x∗) so that

x(k)−x∗ =M−1N(x(k−1)−x∗)
x(k)−x∗ = (M−1N)k(x(0)−x∗)∥∥∥x(k)−x∗

∥∥∥=
∥∥∥(M−1N)k(x(0)−x∗)

∥∥∥
≤
∥∥∥M−1N

∥∥∥k∥∥∥x(0)−x∗
∥∥∥
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Theorem 8 (Convergence of Basic Iterative Method). Given b, A = M −N with M, A non-
singular, if ρ(M−1N) = maxi |λi| < 1, i.e. the spectral radius of M−1N is less than 1, then the
sequence (x(k))k given by Mx(k) =Nx(k−1) + b converges to x∗ =A−1b for any initial x(0).

x(k)→ x∗ =A−1b

Let A = L+D+U , its strict lower triangle, diagonal, and strict upper triangle. The upcoming
methods will pick different parts of these to be M .

Lecture 20: 3-20-19

To see importance of spectral radius ρ(M−1N), note that there exists a submultiplicative matrix
norm ‖·‖∗ such that

∥∥∥M−1N
∥∥∥
∗
< 1

As above, let A= L+D+U .

Jacobi picks M = D, so that N = −L−U . We need D to have nonzeros on the diagonal. This
iteration converges for all matrices that are strictly diagonal dominant—those that have |aii| >∑
j 6=i |aij | for i= 1, . . . ,n.

Proof. We use a special case of Gershgorin’s Disk theorem: given A ∈ Rn×n, let ri =
∑
j 6=i |aij |

Let Di = {z ∈ C : |z−aii|< ri}. Then all of the eigenvalues of A lie in ∪iDi.

Now, consider the matrix M−1N =D−1(−L−U), and note that its diagonal is 0. Note that

ri =
∑
j 6=i

∣∣∣ 1
aii
aij
∣∣∣

= 1
|aii|

∑
j 6=i
|aij |

< 1

Thus, the eigenvalues of M−1N are all of magnitude less than 1, so that the spectral radius
ρ(M−1N)< 1 and thus Jacobi converges.

Gauss-Seidel picks M =D+L so that N =−U . If A is symmetric positive definite, then Gauss-
Seidel converges for any initial x(0).

New topic: say we have sequences ot iterates

x̃(0, x̃(1), x̃(2), . . . , x̃(k) want x̃(k)→ x∗

given x̃(0), . . . , x̃(k), consider

x(k) =
k∑
i=0

αix̃
(i)

we use the past information to better our next iterate.

More generally, to solve Ax= b, we could consider a sequence of subspaces

V1,V2, . . . ,Vk dim(Vi) = i
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then define x(k) as the ”best” vector in Vk.

We will pick Vi as Krylov subspaces. The kth Krylov subspace associated with a matrix A and
vector b is Kk(A,b) = span{b,Ab, . . . ,Ak−1b}

Lecture 21: 3-22-19

Construct an iterative method for solving Ax = b by picking x(k) ∈ Kk(A,b) to be the best choice
in some sense. Under mild assumptions, Kn(A,b) = Rn.

Algorithm 20 General Krylov method form
for k = 1,2, . . . do

x(k) = argminx∈Kk(A,b) f(x,A,b)
Check convergence

end for

We can choose
f(x,A,b) = 1

2‖b−Ax‖
2
2

f(x,A,b) =
∥∥x−x∗∥∥2

2

this function actually turns out to be impossible to minimize. However, this works:

f(x,A,b) =
∥∥x−x∗∥∥2

A

For symmetric positive definite A, we define ‖x‖A =
√
xTAx.

We can actually minimize the first and third functions.

Choosing (for symmetric positive definite A) f(x,A,b) =‖x−x∗‖2A yields the conjugate gradient
method.

Algorithm 21 CG (conceptually)
for k = 1,2, . . . do

x(k) = argminx∈Kk(A,b)
1
2‖x−x

∗‖2A
Check convergence

end for

Need to solve
min

x∈Kk(A,b)

1
2
∥∥x−x∗∥∥2

A

say we are given a matrix Vk that is an orthonormal basis for Kk(A,b). Then

min
x∈Kk(A,b)

1
2
∥∥x−x∗∥∥2

A ⇐⇒ min
y∈Rk

1
2
∥∥Vky−x∗∥∥2

A

in general, to minimize over vectors in a subspace, can take a basis of the subspace, and characterize
the vectors in the subspace as the image of the matrix of the basis. Then we only minimize over a
smaller dimensional vector space.

29



Observe that [
b Ab A2b . . . Ak−1b

]
has columns that converge to the dominant eigenvector. Thus, it is ill-conditioned. Instead, we use
other methods.

Lanczos. β0 = 0,α0 = 0,v1 = b
‖b‖ .

Algorithm 22 Lanczos
for k = 1,2, . . . do

q =Avk
αk = vTk q
q = q−βk−1vk−1−αkvk
βk =‖q‖2
vk+1 = q

βk

end for

note the similarities to Gram-Schmidt. We have that

Vk =
[
v1 . . . vk

]
is an orthonormal basis for Kk(A,b). Furthemore, the matrices Vk and Vk+1 satisfy an interesting
recurrence relation:

AVk = Vk+1T̃k T̃k =
[
Tk
βke

T
k

]
∈ Rk+1,k, Tk =


α1 β1

β1
. . . . . .
. . . . . . βk−1

βk−1 αk


given this specific Vk, want to solve the above minimization problem. Recall we can solve

min
y∈Rk

1
2
∥∥Vky−x∗∥∥2

A

, and then set x(k) = Vky
(k) where y(k) is the above solution. This is equivalent to minimizing

1
2(Vky−A−1b)TA(Vky−A−1b) = 1

2
[
yTV T

k AVky−yTV T
k b− bTVky+ bTA−1b

]
⇐⇒ 1

2
[
yTV T

k AVky−yTV T
k b− bTVky

]
⇐⇒ 1

2
[
yTTky−2bTVky

]
using below

⇐⇒ 1
2
[
yTTky−2‖b‖eT1 y

]
non-first cols of Vk orthog to v1 = b

=⇒ Tky−‖b‖e1 = 0 taking derivative wrt y
⇐⇒ Tky =‖b‖e1

note that we eliminate bTA−1b, which we cannot compute (since x∗ =A−1b). We use above that

V T
k AVk = V T

k

[
Vk vk+1

][ Tk
βke

T
k

]

So our minimization step is to minimize Tky =‖b‖e1, and then set x(k) = Vky
(k). The Tk is tridiag-

onal so the solve is fast.
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Lecture 22: 3-25-19: Krylov Subspaces and Conjugate Gradients

Algorithm 23 CG given spd A, x(0) = 0, r(0) = b,p(0) = r(0)

for k = 1,2, . . . do
γ(k) = r(k−1)T r(k−1)

p(k−1)TAp(k−1)

x(k) = x(k−1) +γ(k)p(k−1)

r(k) = r(k−1)−γ(k)Ap(k−1)

µ(k) = r(k)T r(k)

r(k−1)T r(k−1)

p(k) = r(k) +µ(k)p(k−1)

Check convergence.
end for

The iterates x(k) are in fact equivalent to the above minimizations over the Krylov subspaces.

walking through, first we have a step size of the squared norm of the residual divided by the inner
product inducing the A norm. Then we take a step in the direction of the previous residual of step
size γ(k).

Convergence of CG

Since r(k) = b−Ax(k), we can test whether

1. Check if
∥∥∥r(k)

∥∥∥
2
< ε

2. Check if
∥∥∥r(k)

∥∥∥
2
< ε
(∥∥∥x(k)

∥∥∥
2

)
. This is like a relative error, except since we do not have the

true solution we check against the current iterate.

3. Check if
∥∥∥r(k)

∥∥∥
2
< ε
(∥∥∥x(k)

∥∥∥
2

+‖b‖2
)

Cost of CG

We only do one thing with A, namely, a multiplication Ap(k−1). Thus, our cost per iteration is

Tmult(A) +O(n)

everything besides the multiplication by A are inner products and basic arithmetic. Notably, there
is no dependence on the iteration number. Another key point is that we only need to know how to
apply A to a vector, without forming A.
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Convergence theory

Say that Alb ∈ Kl(A,b), and l is the first such time that this happens. Then

Alb= c1b+ c2Ab+ . . .+ clA
l−1b

Can prove c1 6= 0
Al−1b=A−1c1b+ c2b+ . . .+Al−2b

A−1b= 1
c1

(
Al−1b− c2b− . . .− clAl−2b

)
so that the solution x is in Kl(A,b). Thus, the process only stops when the solution is found.

This happens if A has only l distinct eigenvalues.

Krylov subspaces have a close relationship with polynomials. Any y ∈ Kk(A,b) can be written

y = c1b+ c2Ab+ . . .+ ckA
k−1b

= (c1I+ c2A+ . . .+ ckA
k−1)b

let e(k) = (x(k)−x∗), where x(k) are the iterates from CG.

Theorem 9. ∥∥∥e(k)
∥∥∥
A∥∥∥e(0)
∥∥∥
A

≤ inf
p∈P ∗

k

max
λ∈Λ(A)

|p(λ)|

where P ∗k is the set of polynomials of degree k with p(0) = 1.

this proves the above results on the l distinct eigenvalues. Moreover, we have that if eigenvalues
are close together, then this converges well because polynomials can be fit at 0 near that group.

General theory says convergence takes roughly
√
κ2(A) iterations. (This can be misleading).

Note that this explains why we do not need the entries of A. We need only the multiplications of
A and convergence depends only on the spectrum of A.

In practice, rather than solving Ax= b, pick M ≈A is some way and solve M−1Ax=M−1b. This
is a huge field known as preconditioning.

Lecture 23: 3-27-19

Note that for our iterative methods to solve Ax= b, some assumed x(0) = 0. To deal with this, we
can use iterative refinement. We wish to solve Ax= b with guess x for x∗.

1. set r = b−Ax

2. solve Ad= r for d with initial guess zero

3. set x̂= x+d
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this makes sense since if we solve for d exactly, we have A(x+d) = b.

For an iterative method, define rates and order of convergence. Assume we have a sequence xk→ x∗

as k→∞.

Order of convergence:

1. linear : there exists ρ < 1 such that for k large enough,

|xk+1−x∗| ≤ ρ|xk−x∗|

2. superlinear : there exists a sequence ρk→ 0 such that for large enough k,

|xk+1−x∗| ≤ ρk|xk−x∗|

3. quadratic: there exists an M > 0 such that for large enough k,

|xk+1−x∗| ≤M |xk−x∗|2

4. cubic: there exists an M > 0 such that for large enough k,

|xk+1−x∗| ≤M |xk−x∗|3

cubic =⇒ quadratic =⇒ superlinear =⇒ linear

for linear convergence, we define the rate of convergence as − log10 ρ. We justify this: note that

|xk−x∗|= ρk|x0−x∗|

if we want to reduce the initial factor by ε > 0, so we want |xk−x∗| ≤ ε|x0−x∗|, or equivalently
that

ρk ≤ ε
k log10 ρ≤ log10 ε

−k log10 ρ≥ log10
1
ε

k ≥ 1
− log10 ρ

log10
1
ε

so the number of iterations needed to converge, is inversely proportional to the rate of convergence.

Now, we are back to finding root-finding, want f(x∗) = 0. Note that bisection converges linearly
with ρ= 1

2 . The only assumption needed was that f was continuous.

Say f ∈ C2[a,b], and say we can evaluate f(x),f ′(x). Given a point x0 ∈ [a,b], then

f(x) = f(x0) +f ′(x0)(x−x0) + 1
2f
′′(ξ(x))(x−x0)2 ξ(x) between x and x0

Say that x∗, a root exists. Then plugging in,

0 = f(x0) +f ′(x0)(x∗−x0) + 1
2f
′′(ξ)(x∗−x0)2
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Algorithm 24 Newton’s Method for root finding
for k = 0,1,2, . . . do

xk+1 = xk− f(xk)
f ′(xk)

check convergence
end for

if f were linear, so that f ′′ = 0. Moreover, if we were just close to a root, then (x∗−x0)2 is very
small, and thus possibly negligible compared to (x∗−x0).

If f were linear, x∗ = x0− f(x0)
f ′(x0) . Using this idea, we have Newton’s method for root finding. Given

f ∈ C2[a,b] and x0,

Theorem 10 (Convergence of Newton’s Method). if f ∈C2[a,b], and there is a root x∗ ∈ [a,b] such
that f(x∗) = 0, and f ′(x∗) 6= 0. Then there exists δ > 0 such that if |x0−x∗| < δ, then Newton’s
Method converges quadratically.

If f ′(x∗) = 0, then Newton’s method may still converge, but only linearly if it does.

Lecture 24: 3-29-19

Say we do not have f ′. We want to approximate f ′(xk) is some way if we want to use a method
similar to Newton’s method. We use the first-order finite difference approximation

f(xk)≈
f(xk)−f(xk−1)

xk−xk−1

Algorithm 25 Secant method for root finding (Given f ∈ C2[a,b],x0,x1)
for k = 1,2, . . . do

xk+1 = xk− f(xk)(xk−xk−1)
f(xk)−f(xk−1)

check convergence
end for

Theorem 11 (Convergence of secant method). If f ∈ C2[a,b], and there exists a root x∗ ∈ [a,b],
with f ′(x∗) 6= 0, then there exists some δ > 0 such that for all x0,x1 ∈ (x∗− δ,x∗+ δ), then secant
method converges superlinearly to x∗.

f(x) = x2 provides an example where secant method need not converge when f ′(x∗) = 0, since with
x∗ = 0, we see that for any δ > 0, we can choose two points x0,x1 with the same y values on either
side of the root, so that the approximated derivative is zero and thus secand method does not move.

Now, we consider the problem minxφ(x). Assume φ ∈ C2. At any x0, we can write

φ(x) = φ(x0) +φ′(x0)(x−x0) + 1
2φ
′′(ξ)(x−x0)2

any point x∗ with φ′(x∗) = 0 is called a critical point.

If φ′′(x∗)> 0, we call this point a local minimizer of φ. This is because there exists δ > 0 such that
|x∗−x|< δ =⇒ φ(x∗)< φ(x).
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Is a local max if φ′′(x∗)< 0.

Need more information if φ′′(x∗) = 0.

We will be satisfied if we can find a local minimum.

Since we know that φ′(x∗) = 0 is necessary for local min/max, we try Newton applied to φ′(x).

for x= 1,2, . . . do
xk+1 = xk− φ′(xk)

φ′′(xk)
check convergence

end for

In this algorithm, at each k, we pick xk+1 to minimize or maximize the quadratic

g(x) = φ(xk) +φ′(xk)(x−xk) + 1
2φ
′′(xk)(x−xk)2

note that a quadratic is either convex/ concave, so it has a single global minimum or maximum.

To prevent possible convergence to a maximum, we could enforce φ(xk+1) < φ(xk). To enforce
something like this, we have to go back and change the algorithm.

Lecture 25: 4-8-19

We are considering the minimization problem

min
x∈Rn

φ(x) where φ : Rn→ R

first consider how to solve a set of non-linear equations.

f1(x) = 0
f2(x) = 0

...
...

fn(x) = 0

where fi : Rn→ R.

For example, say f1(x) = x2
1−2x1−x2 +1, f2(x) = x2

1 +x2
2−1. The first equation f1(x) = 0 defines

a parabola (x2 = x2
1−2x1 +1), and f2(x) = 0 defines a circle of radius 1. Solutions x give points of

intersection.

Since direct methods will clearly not work, we wish to construct iterative methods with convergence
xk → x∗ where f(x∗) = 0 if x0 is close enough to x∗. Our approach is Newton’s method. To do
this, we need the Taylor expansion: given p ∈ Rn,

f(x+p) = f(x) +df(x)p+O(‖p‖2)

is true if f ∈ C2 and has bounded second derivatives (so we can write the error term as such).

Say x is near x∗ (where f(x∗) = 0)). Then define p∗ by x∗ = x+p∗. Then we have

f(x+p∗) = 0 = f(x) +J(x)p∗+O(
∥∥p∗∥∥2)
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Algorithm 26 Newton’s Method for nonlinear equations
for k = 1,2, . . . do

Solve J(xk−1)pk =−f(xk−1)
Set xk = xk−1 +pk

end for

thus, we have a nice estimate for p∗ by −J(x)−1f(x).

If there exists a neighborhood of x∗ where J(x) is non-singular, has continuous derivatives, and has
a bounded inverse, then there exists a neighborhood of x∗ such that any initial iterate x0 in the
neighborhood gives Newton’s method converging quadratically to x∗.

Now, we go back to our minimization problem. A point x∗ is a global minimizer of φ(x) if φ(x∗)≤
φ(x) for all x. We also say a point x∗ is a strict global minimizer of φ(x) if φ(x∗) < φ(x) for all
x 6= x∗.

We often seek local minimizers instead of global minimizers. x∗ is a local minimzer of φ(x) if there
exists a neighborhood N of x∗ such that φ(x∗) ≤ φ(x) for all x ∈ N . A strict local minimizer is
defined analogously.

Let f : Rn→ R be C2. Then for p ∈ Rn,

f(x+p) = f(x) +∇f(x+ tp)T p for some t ∈ (0,1)

f(x+p) = f(x) +∇f(x)T p+ 1
2p

T∇2f(x+ tp)p for some t ∈ (0,1)

If we assume further that third order derivatives of f are bounded, then we can write

f(x+p) = f(x) +∇f(x)T p+ 1
2p

T∇2f(x)p+O(‖p‖3)

Lecture 26: (4/10)

Given x∗ ∈ Rn, we will discuss necessary and sufficient conditions for x∗ to be a (strict) local
minimizer of f : Rn→ R.

First order necessary condition: If x∗ is a local minimizer of f and f is C1 in some neighborhood
of x∗, then ∇f(x∗) = 0.

Proof. Suppose x̄ has ∇(x̄) 6= 0. Let p = −∇f(x̄). Then pt∇f(x̄) = −
∥∥∇f(x̄)

∥∥2
2. Since ∇f is

continuous, there exists ρ such that pT∇f(x̄+ tp)< 0 for all t ∈ [0,ρ).

f(x̄+ δp) = f(x̄) +pT∇f(x+ t̄δp)

for 0< δ < ρ, and t̄ ∈ (0,1). Thus, f(x̄+ δp)< f(x̄), and holds for arbitrarily small δ.

Second order necessary condition: If x∗ a local minimizer of f , and f is C2 in some neighborhood
of x∗, then ∇f(x∗) = 0 and ∇2f(x∗) is positive semi-definite.

Suppose we have x̄ with ∇f(x̄) = 0, so that

f(x̄+p) = f(x̄) + 1
2p

T∇2f(x̄+ tp)p t ∈ (0,1)
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then if pT∇2f(x̄)p were negative, we could use continuity etc and see that f(x̄+p)< f(x̄).

Second order sufficient condition: Suppose ∇2f is continuously differentiable in a neighborhood of
a point x∗. If ∇f(x∗) = 0 and ∇2f(x∗) is positive definite, then x∗ is a strict local minimizer of f .

Our first attempt at optimization: Find points where ∇f(x) = 0.

Algorithm 27 Newton’s method for unconstrained minimization
for k = 0,1,2, . . . do

solve ∇2f(xk)pk =−∇f(xk) for pk
xk+1 = xk +pk
check convergence

end for

Geometrically, pk is picked such that xk +pk is a stationary point of

mk(xk +p) = f(xk) +pT∇f(xk) + 1
2p

T∇2f(xk)p

this is like a model function (second order approximation) of f at xk. (Take derivative with respect
to p). However, this may be a bad model for f , only good locally.

Lecture 27: (4/12)

If in the Newton’s method for unconstrained minimization, assuming ∇2f(xk) is positive definite,
then picking xk+1 = xk +pk corresponds to setting xk+1 as the minimizer of

mk(x) = f(xk) +∇f(xk)T (x−xk) + 1
2(x−xk)T∇2f(xk)(x−xk)

so in words, once we are close enough to a minimizer where we have positive definite Hessian,
then every iterate is just the minimizer of the local quadratic approximation to the function at the
previous iterate.

Theorem 12 (Convergence of Newton’s Method). If f has a local minimizer x∗ and is C2 in some
neighborhood around x∗, and ∇2f(x) satisfies

∥∥∥∇2f(x)−∇2f(y)
∥∥∥

2
≤ L‖x−y‖2 for some L > 0 in

some neighborhood of x∗ (Hessian is locally Lipschitz continuous), with ∇2f(x∗) positive definite
and ∇f(x∗) = 0, then the iterates of Newton’s method satisfy

1. if x0 is close enough to x∗, the sequence (xk)k converges to x∗

2. the rate of convergence is quadratic

3. the sequence
(∥∥∇f(xk)

∥∥
2

)
k

converges quadratically to zero

Far from x∗, minimizing mk may not be a good choice, like when f(xk+1) > f(xk), or maybe we
are far enough so that ∇2f(xk) is not positive definite.

Even if our quadratic model is bad globally, can we at least find a direction pk to move downhill?

f(x+p) = f(x) +∇f(x+ tp)T p t ∈ (0,1)
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observe that for a vector p such that ∇f(x)T p < 0, there exists some T such that f(x+γp)< f(x)
for all γ ∈ (0,T ).

At a point x, any vector p that satisfies ∇f(x)T p < 0 is a descent direction. This motivates
search direction methods for minimizing a function.

Algorithm 28 Search direction methods
for k = 0,1,2 . . . do

find pk, a descent direction at xk
pick αk > 0, how far to move in that direction
set xk+1 = xk +αkpk
check convergence

end for

We see that Newton’s method fits into this framework: First we choose pk = −∇2(xk)−1∇f(xk).
If ∇2f(xk) is positive definite, then pk is a descent direction. To see this, note that ∇f(xk)T pk =
−∇f(xk)T∇2f(xk)−1∇f(xk). Since ∇2f(xk)−1 is positve definite, we have that this is negative so
that pk is indeed a descent direction.

Lastly, Newton’s method picks the step size αk = 1.

Now since we want ∇f(xk)T pk < 0, if we suppose ∇f(xk) 6= 0 (since otherwise we would be checking
if xk is a local minimizer), then pk =−∇f(xk) works.

Algorithm 29 Gradient descent
for k = 0,1,2, . . . do

pk =−∇f(xk)
pick αk
xk+1 = xk +αkpk
check convergence

end for

Now, we consider how to pick αk. This process is known as line search. Once we have picked
pk, we consider φ(α) = f(xk +αpk) for α > 0. We can then consider problems such as minimizing
φ(α), but not necessarily this problem explicitly.

We ask that φ(0)> φ(α) at the moment, as this is very reasonable.

Lecture 28: (4/15)

In regards to choosing the step size αk, we know that in Newton’s method, αk = 1, since this
corresponds to minimizing the quadratic approximation that we were minimizing. However, in
gradient descent, we have a linear approximation, so there is no natural choice of αk; there is no
minimum of the linear approximation.

Recall that our problem is, given a search direction pk, consider φ(α) = f(xk +αpk), where α > 0.
Ideally, we wish to solve minα>0φ(α), but this can be very hard to solve.

Let us get some criteria for picking α—we want:

• φ(αk)< φ(0) (locally improving)
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• φ(αk)≤ φ(0) + c1αk∇f(xk)T pk (not too small of a step)
i.e. f(xk+1)≤ f(xk) + c1αk∇f(xk)T pk

in the second requirement, note that the amount required to decrease by is relative to the gradient.
If the gradient is smaller, then the amount required to decrease is smaller. Moreover, note that the
requirement for decrease is a linear function of α with negative slope, so that as α increases, and
we are choosing a high step size, we require a larger decrease in f .

If desired, we normalize our search direction ‖pk‖2 = 1, but this will be taken into account later
anyway.

We choose 0 < c1 < 1. Note that c1 must be less than 1. No natural way to choose c1, and it is
often picked 1e-4 or 1e-3. Moreover, it is often chosen constant, but does not have to be. It is not
absolutely necessary to change c1 over iterations since the rest of the terms are scaled by iteration
anyway.

This still does not rule out short steps. Thus, we introduce another condition that does this. We
add a curvature condition, that αk must satisfy:

∇f(xk +αkpk)T pk ≥ c2∇f(xk)T pk c2 ∈ (c1,1)

equivalently, φ′(αk)≥ c2φ
′(0)

It is also common to symmetrically ask for no large positive slopes, but we do not really consider
that here. i.e. could ask |c2φ

′(0)| ≥ φ′(αk).

c2 is often picked near .9. Note that taking c2 closer to 1 makes this an easier condition to satisfy.

The two conditions above, for some 0< c1 < c2 < 1, are known as the Wolfe conditions.

Say f is continuously differentiable, pk is a descent direction, and f is bounded from below along
the line xk +αpk, α > 0. Then there exists an α > 0 that satisifes the Wolfe conditions.

Algorithm 30 Backtracking Line Search
Given αmax ≤ 1, ρ ∈ (0,1), max steps
Set α= αmax
for k = 1,2, . . . , max steps do

if α satisfies Wolfe then
return α

else
α= ρα

end if
end for

Lecture 29: (4/17)

Note the second Wolfe condition is kinda like approaching a local minimum, as in this case the
gradient would be zero. Also, the first Wolfe condition is in general easier to satisfy than the second.
Thus, the second Wolfe condition is occasionally omitted.
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Note that our above line search is just one method to search for α satisfying the conditions. For
instance, another method is given by binary search. One reason why backtracking is popular: we
can pair it with Newton and set αmax = 1.

Convergence criteria:

•
∥∥∇f(xk)

∥∥
2 ≤ ftol

• ‖xk+1−xk‖2 ≤ atol

• ‖xk+1−xk‖2 ≤ rtol‖xk‖2

• ‖xk+1−xk‖2 ≤ tol(1 +‖xk‖2)

this set of criteria tell if we have converged to a stationary point. To tell if we converged to a
local minima, need to look at the hessian ∇2f(xk). The Wolfe conditions help with this because
they guarantee that the function value decreases at each iteration. However, counterexamples that
converge to local maxima can still be constructed.

Now, for the problem of minx f(x), we have Since the Bk are spd, the pk are search directions. For

Given x0,f,B0 ∈ Rn×n symmetric positive definite,
for k = 0,1,2, . . . do

Solve Bkpk =−∇f(xk)
Pick αk
xk+1 = xk +pk
Check convergence
Construct Bk+1 symmetric positive definite.

end for

Bk = I, this is gradient descent, so that solving for pk is cheap. If Bk =∇2f(xk), we have Newton’s
method, which converges very nicely locally, but is more expensive since need to compute ∇2f(xk)
and have to solve a nontrivial linear system.

In between these two choices are Quasi-Newton methods. The idea is to update Bk at each
step to incorporate some information about ≈ ∇2f(xk). Kinda somewhat analogous to replacing
the derivative by the secant approximation in the secant method.

Lecture 30: (4/19)

Interpretation for the above: For a Bk spd, pk is chosen to take xk to the global minimizer of the
model function

mk(p) = f(xk) +∇f(xk)T p+ 1
2p

TBkp

so that pk =−B−1
k ∇f(xk).

Given Bk, how to move to Bk+1? We will use information about the gradients we know to update
it. Our model function at the new step is

mk+1(p) = f(xk+1) +∇f(xk+1)T p+ 1
2p

TBk+1p

40



we pick Bk+1 so that ∇mk+1 matches ∇f and xk and xk+1. We want that ∇mk(−αkpk) =∇f(xk).
Note that ∇mk+1(0) =∇f(xk+1), so by construction we get that ∇mk+1 matches ∇f at xk+1 for
free.

Define sk = xk+1−xk = αpk, and define yk =∇f(xk+1)−∇f(xk). We have

∇mk+1(−αkpk) =∇f(xk+1)−Bk+1αkpk

We want this to be equal to ∇f(xk). It is necessary that

Bk+1αkpk =∇f(xk+1)−∇f(xk)

Bk+1sk = yk

this is know as a secant condition. Note that for Bk+1 to be spd, we must have yTk sk > 0, because
sTkBk+1sk = sTk yk.

Now, we consider if this is feasible to satisfy in an algorithm. We could for instance request for
this condition to be satisfied in the line search. In fact, the second Wolfe condition, the curvature
condition, enforces this condition. This is because we can write the curvature condition as

∇f(xk+1)T sk ≥ (c2−1)αk∇f(xk)T pk

Thus, given Bk, we pick Bk+1sk = yk. Note that the matrix has ≈ n2/2 degrees of freedom, while
there are only n linear constraints. There are infinitely many spd Bk+1 that satisfy this. To
determine which one to pick, we will consider two techniques.

Of all possible Bk+1, we can pick the one closest to Bk in some sense:

Bk+1 solves min‖B−Bk‖W =
∥∥∥W−1/2(B−Bk)W−1/2

∥∥∥
F

s.t. Bsk = yk, B spd
note the use of the weighted Frobenius norm. Any choice of norm gives a Quasi-Newton method.
There are good choices of W . With special choices of W , we get closed form solutions to this
problem. Note that is we just naively used say the Eucldean norm, then we would not have a
closed form solution (singular value).

For a nice choice of W , yields DFP (Davidson-Fletcher-Powell):

Bk+1 = (I−ρkyksTk )Bk(I−ρkskyTk ) +ρkyky
T
k

ρk = 1
yTk sk

can verify that Bk+1sk = yk.

Note that we only solve a linear system with Bk. It is not important to know it exactly. Thus, we
can choose to maintain and update ”inverses” of Bk. Let Hk = B−1

k . Now, we can pick Bk+1 and
therefore Hk+1 as

min ‖H−Hk‖W
s.t. H−1sk = yk H spd

Doing this yields the method BFGS (Broyden, Fletcher, Goldfarb, Shanno). This has a closed
form solution

Hk+1 = (I−ρkskyTk )Hk(I−ρkyksTk ) +ρksks
T
k

ρk = 1
yTk sk
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Algorithm 31 BFGS
given x0,H0
for k = 0,1,2, . . . do

pk =−Hk∇f(xk)
pick αk via line search
xk+1 = xk +αkpk
check convergence
Compute Hk+1 via the above

end for

Lecture 31: (4/22)

Note that in general, we will get convergence of the iterates long before convergence of the Bk to
the Hessian.

Theorem 13 (Convergence of BFGS). Assume ∇2f is Lipschitz continuous in a neighborhood of
a strong local minimizer x∗. Then if BFGS converges to x∗, then the convergence is superlinear.
i.e. xk→ x∗ superlinearly.

If f ∈C2, and αk is picked to satisfy the Wolfe conditions with c1 ≤ 1
2 , if xk→ x∗, with ∇f(x∗) = 0

and ∇2f(x∗) is spd, and if

lim
k→∞

∥∥∥(Bk−∇2f(xk))pk
∥∥∥

2
‖pk‖2

then αk = 1 is admissable for all k > k0 and if αk = 1 for k > k0, then xk→ x∗ superlinearly.

Note the analogy to the superlinearity of the secant method. In the secant method we approximate
the derivative. In BFGS we approximate the Hessian. Also, note that the limit condition is that
the Bk become good approximations of the Hessian in the direction of the steps that are taken,
and relative to the length of the steps.

Now we will consider modified Newton methods, which deal with what happens when the
Hessian is not positive definite away from the solution x∗.

Algorithm 32 Modified Newton Method
given x0,f
for k = 0,1,2, . . . do

Bk =∇2f(xk) +Ek is spd
solve Bkpk =−∇f(xk)
pick αk
xk+1 = xk +αkpk
check convergence

end for

We can pick Ek = γI, with γ ≥ 0, such that λmin(∇2f(xk) +γI)≥ δ > 0.

Another method is to find ∇2f(xk) = V ΛV T , and only modify the ones that are negative. Bk =
V Λ̃V T , where Λ̃ = max(Λ, δI), δ > 0.
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Computationally, Quasi-Newton methods are nicer than Newton’s method, since we need only
computer ∇f(xk) and not the Hessian, and also we need only compute a matrix multiplication at
every step instead of a linear system solve.

Lecture 32: (4/24)

First we will look at a specific example of optimization, with

f(x) = f1(x)f2(x)f3(x)

fi(x)≥ 0 fi(x) = (x1− ri,1)2 + (x2− ri,2)2

so that f is nonnegative, and f is 0 if and only if at least one of the fi(x) are 0.

We place the roots on the third roots of unity, and see that Newton’s method has crazy regions
(of initial choices) of convergence, large regions with no convergence, and disconnected regions of
convergence. Modified Newton’s method gives nice connected regions of convergence. BFGS with
the identity as the initial is absolutely wild, with points of no convergence all over the place. BFGS
with the true Hessian (with constant added to the diagonal as needed) as the initial looks more
like the regions for Newton’s method, with still a large region of non-convergence.

Before we were considering line search methods. Now, we consider trust region methods. These
have a distance ∆k which is how far one is willing to move in a given iteration. ‖xk+1−xk‖ ≤∆k.

How to choose xk+1? Pick a model function mk(x) for f(x) at xk. Then xk+1 is picked to solve

min
‖x−xk‖≤∆k

mk(x)

for example, if mk(x) = f(xk) +∇f(xk)T (x−xk) + 1
2(x−xk)T∇2f(xk)(x−xk), which is just like

our model function for Newton’s method. Recall that in Newton’s, there are issues if the Hessian is
not spd. If the Hessian is in fact negative definite, then Newton’s steps towards a local maximizer.
However, in trust region methods, since we do not have a fixed step direction, f will still (probably)
be getting smaller in the iteration.

Algorithm 33 Trust Region Methods
Given x0, δ0,f
for k = 0,1,2, . . . do

xk+1 = argmin‖x−xk‖≤∆k
mk(x)

Update from ∆k to ∆k+1
Check for convergence

end for

How to update ∆k? Define ρk = f(xk)−f(xk+1)
mk(xk)−mk(xk+1) . This measures how much the function decreases

in the step versus the decrease predicted by the model. Note that the denominator is nonnegative
by choice of xk+1. It is good if ρk ≈ 1, since then the model is a good predictor.

Thus, our strategy is: If ρk ≥ 1− δ, then increase ∆k+1.

If ρk ≤ c < 1 decrease ∆k+1.

If c < ρk < 1− δ, keep ∆k+1 the same.

Note that often the model functions are chosen so that there are closed form solutions.
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Lecture 33: Constrained Optimization (4/26)

Now we will move onto considering minx∈Ω f(x), minimizing over a region Ω. For instance, we can
consider

min
x
f(x)

s.t. xi ≥ 0 i= 1,2, . . . ,n

in our case, we will only consider Ω of the form

Ω = {x ∈ Rn : ci(x) = 0, i ∈ E,︸ ︷︷ ︸
equality constraints

ci(x)≥ 0, i ∈ I︸ ︷︷ ︸
inequality constraints

}

we will not consider strict inequality constraints. Any x ∈ Ω is called a feasible point.

If we have a problem in which is (strong) local minimizer is strictly interior to Ω, we may be able
to use existing methods (perhaps with minor modification). However, we will be more interested
in the other case, in which there is no (strong) local minimizer in the interior of Ω.

A point x∗ ∈ Ω is a local minimizer of minx∈Ω f(x) is there exists a neighborhood N of x∗ such
that f(x∗)≤ f(x) for all x ∈N ∩Ω. It is strict if f(x∗)< f(x) for all x ∈N ∩Ω\{x∗}.

For any point x ∈ Ω, we define A(x), the set of active constraints at x.

A(x) = E∪{i ∈ I : ci(x) = 0}

We will make some assumptions on the problem: f ∈C1 and ci(x)∈C1. Note that this assumption
is that each ci(x) is independently C1. We can still get Ω with rough edges by combining several
constraints.

Let us consider minx∈Ωx1 +x2 with Ω = {x : x2
1 +x2

2 = 1}. The solution is given by (−
√

2
2 , −

√
2

2 ).
Consider c(x) = x2

1 +x2
2−1, and note ∇c(x) =

[
2x1 2x2

]
. Thus ∇c is normal to the surface of the

circle. For an extreme point on the boundary, we need ∇c= λ∇f , i.e. for the two be parallel.

Let us make the assumption that for any x ∈ Ω, let A(x)T be the matrix whose columns are
∇ci(x) for i ∈A(x). We say the constraint qualification condition holds at x if A(x)T has full
column rank. This guarantees that our set of constraints does not have redundancies at the point x.
Define the Lagrangian L(x,λ) = f(x)−

∑
i∈E∪I λici(x). Then we have the first order optimality

(KKT = Karush, Kuhn, Tucker) conditions. Suppose x∗ ∈ Ω is a local minimizer of f , and
constraint qualifications hold at x∗. Also, suppose that f,ci are continuously differentiable. Then
there exists a vector λ∗ (of Lagrange multipliers) such that

• ∇xL(x∗,λ∗) = 0

• ci(x∗) = 0 for i ∈ E

• ci(x∗)≥ 0 for i ∈ I

• λ∗i ≥ 0 for i ∈ I

• λ∗i ci(x∗) = 0 for i ∈ E∪ I
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Lecture 34: (4/29)

Say that at a candidate minimizer x∗, we have A(x∗) = ∅, so no active constraints. Then we can
treat this as an unconstrained minimization problem. Now, we consider what happens when A(x∗)
is nonempty.

Let us again consider minx∈Ωx1 + x2, where Ω = {x2
1 + x2

2 − 1 = 0}. Consider a point x with
c1(x) = x2

1 +x2
2−1 = 0. For small s we have c1(x+ s)≈ c1(x) +∇c1(x)T s=∇c1(x)T s. Thus, if we

want to move in some way s while staying on the constraint, then we need s to be orthogonal to
the gradient ∇c1(x), since we need c1(x+ s) = 0. For a direction s to be a descent direction, need
∇f(x)T s < 0. This is why to first order, at an optimum, we necessarily need existence of λ such
that ∇f = λ∇c1, since in this case we cannot move while satisfying our constraint and lowering f .

Say we have a problem with one inequality constraint

minf(x)

s.t. c1(x)≥ 0

given an x such that c1(x) = 0, can we find an s such that c1(x+s)≥ 0 and f(x+s)< f(x)? Now,
for f(x+s)< f(x) need ∇f(x)T s < 0. For c1(x) we have c1(x+s)≈ c1(x)+∇c1(x)T s=∇c1(x)T s.
We can either not change c1, or increase it, to keep satisfying the constraint. Thus, we need
∇c1(x)T s≥ 0. Hence, any valid s, (to first order) satsifies ∇c1(x)T s≥ 0 and ∇f(x)T s < 0. In this
case, we necessarily need existence of a λ≥ 0 such that ∇f(x) = λ∇c1(x).

Note that in the KKT conditions, if there are no active constraints at x, then since ∇xL(x,λ) =
∇f(x) = 0, so this is our first order condition in unconstrained minimization.

Lecture 35: Quadratic Programming (5/1)

Now we consider a (not fully general) quadratic programming problem

min
x

1
2x

THx−dTx

s.t. Ax− b

where we assume H is symmetric, A ∈ Rm×n, m < n, and A has full row rank. Note that the full
row rank assumption is not really restrictive since we can remove redundant rows when there is
linear dependence.

L(x,λ)− 1
2x

THx−dTx−λT (b−Ax). From KKT, we know that at a solution, the gradient of the
Lagrangian is zero, so Hx−d+ATλ = 0. We also know that at a solution, b−Ax = 0. Thus, we
have [

H AT

A 0

][
x
λ

]
=
[
d
b

]
Note that this is a square linear system of size n+m×n+m. Now, we ask when this linear system
has a unique solution. If H is symmetric positive definite, the matrix can still be indefinite. Call
the matrix K. K is nonsingular if yTHy 6= 0 for all nonzero y ∈ kerA.

Algorithm overviews:
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Active set methods look for solutions by moving along the boundary of Ω, adding and removing
constraints from the active set.

Penalty methods. Suppose we only have equality constraints. Define
ψ(x,µ) = f(x) + 1

2µ
∑
i∈E ci(x)2. Thus, we pay a penalty to move away from the constraints. thus,

Algorithm 34 Penalty methods
a sequence (µk)N , µk→ 0
for k = 1,2, . . . do

xk+1←minxψ(x,µk), using xk as initial guess
end for

this solves a sequence of unconstrained problems.

Barrier methods. Now, say we only have inequality constraints, and define
φ(x,µ) = f(x)−µ

∑
i∈I logci(x)

Algorithm 35 Barrier methods
start with x in interior of Ω
solve a sequence of unconstrained problems
use solution at µk to initialize the problem with Mk+1.

Perhaps the most general methods for these optimization problems are know as sequential quadratic
programs (SQP). Given (x0,λ0)

Algorithm 36 Barrier methods
given
for k = 0,1,2,3, . . . do

solvemin
p
f(xk) +∇f(xk)T p+ 1

2p
T∇xxL(x0)p

∇ci(xk)T p+ ci(xk) = 0, i ∈ E

∇ci(xk)T p+ ci(xk)≥ 0, i ∈ I

Set xk+1,λk+1 = (xk +p, Lagrange multipliers from solution of above)
end for

Lecture 36: Types of Optimization Problems (5/3)

One specific instance of constrained optimization is linear programming, given as

min
x

cTx

s.t. Ax= b

x≥ 0

the objective is linear and the feasible set is a polytope. Since the objective f is linear, if f is
bounded from below, all local minimizers occur on the boundary of the set. The simplex method
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moves along the boundary to find the minimizer. Also, we have interior point (primal-dual) methods
that move through the interior of the feasible set towards a solution on the boundary.

In convex optimization, we consider optimization of convex functions f over convex sets Ω. A
set S is convex if for all x,y ∈ S, we have αx+ (1−α)y ∈ S for all α ∈ [0,1]. A function f is
convex if its domain S is convex and for all x,y ∈ S, f(αx+(1−α)y)≤ αf(x)+(1−α)f(y) for all
α ∈ [0,1]. f is strictly convex if the inequality is strict.

If f and Ω are convex, then any local solution is also a global solution.

Now, we consider nonlinear least squares. Before, we were considering min 1
2‖Ax− b‖

2
2. What if we

knew v(t) = x1e
x2t cos(x3t), and we measure samples bi = v(ti)+noise for some t1, . . . , tm and some

specific x∗1,x∗2,x∗3. we want to fit the parameters x1,x2,x3. We can express this problem as

min
x

1
2
∥∥g(x)− b

∥∥2
2

where gi(x) = vx(ti).

Algorithm 37 Gauss-Newton algorithm for nonlinear least squares
given x0
for k = 0,1,2 . . . do

solve pk = argminp 1
2
∥∥Jg(xk)p− (b−g(xk))

∥∥2
2

set xk+1← xk +pk
end for

note that the idea is in linearizing the function g utilizing the derivative Jg around xk.

Lecture 37: Randomized Numerical Linear Algebra (5/6)

We consider the problem of computing low-rank approximations. Given A∈Rn×n, we say A is well
approximated by a matrix of rank-k if there are matrices W,Z ∈Rn×k such that A≈WZT . Recall
the optimal rank-k approximation is the k-truncated SVD.

Our idea for solving this problem is the capture the range of A. Say we could do this and get an
orthonormal basis Q ∈ Rn×k for the range of A or ≈ span(Uk). Given Q, it is good if A≈QQTA,
so that

∥∥∥(I−QQT )A
∥∥∥

2
is small. Note that if Q= Uk, the optimal choice, then the norm is σk+1.

Now, say that A ≈ QQTA = Q(QTA︸ ︷︷ ︸
B

). Now, take the reduced SVD B = ŨΣV T , so Ũ and Σ are

k×k, and V T is k×n. Now, plugging this back in to QQTA=QB, we have QQTA=QŨΣV T , so
that this is in fact an SVD for QQTA. Thus, we have A≈QŨΣV T .

Thus, our general recipe is to find a Q that approximates the range of A, and then use Q to build
some sort of standard matrix factorization.

To find Q, we use randomness. Take a random vector w ∈Rn, with entries drawn iid N(0,1) entries.
Construct y = Aw. This is like a sample of the range of A in some sense. Now, say we are given
multiple random vectors w(i), i= 1, . . . ,k. Then we get different vectors y(i) =Aw(i).

However, A is not rank-k. Say A = H+E, where H is rank-k and E is small. Thus, we may use
w(i) for i= 1,2, . . . ,k+p for p a small parameter.
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Algorithm 38 Approximate range
Given A,k,p
Construct Ω ∈ Rn×k+p with iid N(0,1) entries
Y =AΩ
Y =QR

Note that Q is an orthonormal basis for the range of Y . This is one way to choose a Q, and is a
provably good way in some sense. For instance, E

[∥∥∥(I−QQT )A
∥∥∥] =

(
1 + 4

√
k+p

p−1
√
n
)
σk+1, so in

expectation we are somewhat close to σk+1, the optimal approximation error.

48


