
CS 6210: Matrix Computations

Derek Lim

Fall 2019

Instructor: David Bindel

Course Description: Stable and efficient algorithms for linear equations, least squares, and
eigenvalue problems. Direct and iterative methods are considered. Julia and/or MATLAB are
used extensively.

Textbooks: Golub and Van Loan, Matrix Computations and Demmel, Applied Numerical Linear
Algebra

Webpage: https://www.cs.cornell.edu/courses/cs6210/2019fa/index.html

Lecture 1: Introduction (8/30/19)

Consider the following two algorithms to compute a matrix-vector product.

1 function y = matvec_row (A, x)
2 y = zeros(m ,1);
3 for i = 1:m
4 for j = 1:n
5 y(i) = y(i) + A(i,j)*x(j)
6 end
7 end

1 function y = matvec_col (A, x)
2 y = zeros(m ,1);
3 for j = 1:n
4 for i = 1:m
5 y(i) = y(i) + A(i,j)*x(j)
6 end
7 end

These two algorithms for matrix-vector multiplication may take different durations of time. The
layout in Fortran, MATLAB, and Julia (column-major order) leads to the second algorithm, which
processes column by column, to be preferred. Memory basics:

• 1D ordering

• Cache architecture

1

https://www.cs.cornell.edu/courses/cs6210/2019fa/index.html

– Temporal: access small sets of data and do lots of work before moving on
– Spatial: access elements in order

Basic Linear Algebra Subroutines (BLAS)

• Level 1: O(n) work on O(n) data

– e.g. dot products, adding/ scaling vectors
– typically working with each element once, so temporal locality will not help much but

spatial does

• Level 2: O(n2) work on O(n2) data

– e.g. matrix-vector product
– again, does not really make good use of temporal locality

• Level 3: O(n3) work on O(n2) data

– e.g matrix multiplication
– makes use of temporal locality

When doing more complex operations, we will often break matrices into blocks to make use of Level
3 BLAS and temporal locality.

1 function C = naive_matrix_multiply (A, B)
2 [m,p] = size(A):
3 [p,n] = size(B);
4 C = zeros(m,n);
5 for i in 1:m
6 for j in 1:n
7 for k in 1:p
8 C(i,j) = C(i,j) + A(i,k)*B(k,j)
9 end

10 end
11 end

Different permutations of the indices lead to different ways to view the operations:

(i, j)(k) — ci,j =A(i, :) ·B(:, j) gives dot products of rows of A with columns of B

(k)(i, j) — C =
∑
kA(:,k)B(k, :) is a sum of outer products of columns of A with rows of B

Instead of going elementwise, we can break the matrices into blocks.

C =
[
C11 C12
C21 C22

]
A=

[
A11 A12
A21 A22

]
B =

[
B11 B12
B21 B22

]

Then Cij =
∑2
k=1A:,kBk,:. Locality kicks in here and improves performance. The smaller blocks

could make use of the cache.

2

Lecture 2: Types of Matrices (9/4)

Problem du jour: Argue that the set of unit upper triangular n×n matrices forms a group with
operation given by the standard matrix product.

Each element of the group is invertible since each element has determinant 1. The product of two
unit uper triangular matrices is unit upper triangular. The identity is unit upper triangular. All
other properties follow from the properties of the matrix product.

In matrix computations/ numerical linear algebra, the choice of basis is an often important con-
sideration when studying linear maps. Some properties such as symmetry, skew symmetry, and
nonsingularity do not depend on the basis. Types of matrices that we will consider are

• General dense matrix

• Diagonal (basis dependent)

• Triangular (basis dependent)

– Strictly triangular means 0 on the diagonal

• Permutation matrix: P ∈ {0,1}n×n, one 1 per row/ column

• Tridiagonal matrix: bij = 0 for |i− j|> 1

• Banded matrix: bij = 0 for |i− j|> β where β is the bandwith

– Can also have a lower and upper bandwith

• Hessenberg

Consider the problem of computing a matrix vector product y =Dx where D is diagonal.
1 D = diag(d);
2 y = D*x; % O(nˆ2) time and space
3

4 % instead , for O(n) time and no additional space ,
5 y = d .* x;

A general sparse matrix has ”most” entries as zero, so we store only the nonzeros explicitly (we
are leaving the term ”most” up for interpretation). For instance, for the matrix

1 0 0 0
0 2 0 0
0 1 3 0
0 0 1 4

we could store it in the usual MATLAB/ Julia/ Python/ FORTRAN column major order:

1000 0210 0031 0014

Compressed sparse column (CSC) format is like the column major format, except we store only
the nonzero entries along with their row indices, and column pointers. Column pointer j stores the

3

entry 1 2 1 3 1 4
row idx 1 2 3 3 4 4

column pointer 1 2 4 6 7

index k such that nonzero entry k (in top to bottom, left to right order) is the topmost nonzero
entry in column j.

A data sparse matrix is one that requires far fewer than n2 parameters to describe it. Examples
include:

• Low rank matrices

– For instance, a rank 1 matrix A ∈ Cn×n can be written A= uvT where u,v ∈ Cn

• Toeplitz matrices

– Of the form:
r1 r2 r3 . . . rn
c2 r1 r2 . . . rn
...
cn cn−1 cn−2 . . . r1

– These are not generally low rank
– There is an O(n logn) multiply by FFTs

An example of making use of the data sparsity of low rank matrices can again be found in matrix-
vector multiplication:

1 A = u*v ’;
2 y = A*x; % Bad way to multiply , O(nˆ2) time and space
3

4 % Better O(n) time method :
5 y = u*(v’*x);

Consider the n×n matrices, which form an n2 dimensional vector space. Also, consider the map
X 7→ AX, where A ∈ Cn×n. This need not be an O(n4) operation because of the matrix structure
that we have.

For a matrix A, we define vec(A) as the vector formed by listing the elements of the matrix in
column major order.

The Kronecker product of two matrix A ∈ Cm×n and B ∈ Cp×q is defined as

A⊗B =

a1,1B .. . a1,nB

...
am,1B .. . am,nB

 ∈ Cmp×nq

Lecture 3: Linear Algebra Review (9/6)

Problem du jour: How much does it cost to add two sparse matrices (in compressed sparse column
form)? What about adding O(n) sparse matrices, each with a constant number of nonzeros (nnz)?

4

O(nnz1 ·nnz2) because of reindexing.

Linear Algebra Review

We typically denote abstract vector spaces as V,U ,W (generally over R or C). Some examples that
we will use include:

• Rn, Cn

• Pd = {polynomials in one variable of degree at most d}

• L(V,W) = {linear maps V →W}

• V∗ = {linear functions V → F}= L(V,F) for the field F associated with V

• C(Ω) = {continuous functions Ω→ R}

To illustrate the concept of bases, we take the example Pd. An example of a basis is the power
basis, which is [1,x,x2, . . . ,xd]. Another basis is given by the Chebyshev polynomials
[T0(x),T1(x), . . . ,Td(x)], which can be defined recursively as

T0(x) = 1
T1(x) = x

Tj+1(x) = 2xTj(x)−Tj−1(x)

The matrix A=
[
1 x x2

]
represents a map R3→P2. For instance,

[
1 x x2

]1
2
1

= 1 + 2x+x2

Let V,W vector spaces, and A : V →W a linear map. Say BV and BW are bases for V and W,
respectively. A=B−1

W ABV is the matrix representation of A with respect to these choices of bases.

A norm is a map ‖·‖ : V → R such that

• ‖αv‖= |α|‖v‖ for α ∈ C

• ‖v‖ ≥ 0, ‖v‖= 0 ⇐⇒ v = 0

• ‖v+w‖ ≤‖v‖+‖w‖

Examples in Rn:

• ‖u‖p =
(∑n

j=1
∣∣vj∣∣p)1/p

for p >= 1

• ‖v‖∞ = maxj
∣∣vj∣∣

Consider norms over Pd

5

• ‖p‖L2[0,1] =
√∫ 1

0
∣∣p(x)

∣∣2 dx
• ‖p‖L2[0,1] =

∫ 1
0
∣∣p(x)

∣∣ dx
• ‖p‖L2[0,1] = supx∈[0,1]

∣∣p(x)
∣∣

An inner product 〈·, ·〉 : V ×V → R (or C) has properties

• 〈αv,w〉= α〈v,w〉

• 〈v1 +v2,w〉= 〈v1,w〉+ 〈v2,w〉

• 〈v,w〉= 〈w,v〉

• 〈v,v〉 ≥ 0, is 0 ⇐⇒ v = 0

every inner product has an associated norm ‖v‖=
√
〈v,v〉.

Here are three (or four) possible meanings of a matrix. A can represent

• mapping from a space to itself

• mapping between two spaces

• mapping from two vectors to R (or C)

– bilinear form: (x,y) 7→ yTAx

– sequilinear form: (x,y) 7→ y∗Ax

• mapping V → R that is pure quadratic

– x 7→ xTAx

Lecture 4: Canonical Forms, Norms (9/9)

Problem du jour: Prove the Cauchy-Schwarz inequality
∣∣〈x,y〉∣∣≤‖x‖2‖y‖2 without making use of a

specific basis/ structure of Rn.

Proof.

‖x+y‖22 ≤ (‖x‖2 +‖y‖2)2

≤‖x‖22 +‖y‖22 + 2‖x‖2‖y‖2
‖x+y‖22 = 〈x+y,x+y〉

= 〈x,x〉+ 〈y,y〉+ 2〈x,y〉
=‖x‖22 +‖y‖22 + 2〈x,y〉

‖x−y‖22 =‖x‖22 +‖y‖22−2〈x,y〉 likewise
2
∣∣〈x,y〉∣∣≤ 2‖x‖2‖y‖2

6

General choice of basis Orthonormal basis (bases)
Linear map L : V →W Rank/ nullity Singular value decomposition

Linear operator L : V → V Jordan form Schur form
Quadratic form L : V → C Sylvester intertia Symmetric eigendecomposition

Table 1: Canonical forms

These canonical forms have the following shapes:

• Rank/ nullity:
[
I 0
0 0

]
, A=W−1AV

• Singular value decomposition:

σ1
σ2

. . .
σr

0
. . .

0

σ1 ≥ σ2 ≥ . . .≥ 0, Σ = U∗AV

• Jordan form:

Jλ1

. . .
Jλk

, Jλ =

λ 1

.
λ 1

λ

• Schur form: T =

t11 t12 t1n

.
tn−1,n−1 tn−1,n

tnn

• Sylvester inertia:

I 0
−I

• Symmetric eigenproblem:

λ1

. . .
λn

The rank/ nullity, Jordan form, and Sylvester inertia are discontinuous with respect to pertubations
to the linear operator. Thus, they are not typically useful to directly compute on a physical
computer, as numerical error and noise in data could change these forms significantly.

Norms

Now, consider a space of linear maps L(V,W). A norm ‖·‖ over this space is consistent if ‖AB‖ ≤
‖A‖‖B‖.

7

Example 0.1 (Frobenius norm).
‖A‖2F =

∑
i

∑
j

∣∣ai,j∣∣2
This is a consistent inner-product norm, induced by the inner-product.

〈A,B〉=
∑
i

∑
j

aijbij = tr(B∗A)

The Frobenius norm is easy to compute, but may not always give us nice bounds.

Let V,W be normed vector spaces. Then the operator norm/ induced norm ‖·‖V,W is

‖A‖V,W = sup
v 6=0

‖Av‖W
‖v‖V

this is a consistent norm.

Example 0.2.

• ‖A‖1 = supx 6=0
‖Ax‖1
‖x‖1

= maxj
∑
i

∣∣aij∣∣
• ‖A‖∞ = supx 6=0

‖Ax‖∞
‖x‖∞

= maxi
∑
j

∣∣aij∣∣
• ‖A‖2 = supx 6=0

‖Ax‖2
‖x‖2

= σ1

To see this, consider ϕ(x) = supx 6=0
‖Ax‖2

2
‖x‖2

2
.

ϕ(x) = xTATAx

xTx
. . .calculus elided

ATAx= xTATAx

xTx

In this last derivation we use variational notation. δ[f(X)] = d
ds |s=0 f(X+sδX) = ∂

∂[δX]f(X).

As an example of the utility of variational notation, say we want to compute δ[A−1].

δ[A−1A] = δ[I] = 0
δ[A−1A] = δ[A−1]A+A−1[δA] product rule
δ[A−1] =−A−1[δA]A−1

Lecture 5: (9/11)

Problem du jour: Suppose Q(s) satisfies QTQ = I and is differentiable with respect to s. Show
d
dsQ(s) =QS for some S =−ST .

8

Proof. (dQ
ds

)T
Q+QT

(dQ
ds

)
= 0

QT
(d
ds
Q
)

=−
(d
ds
Q
)T
Q

QT
(d
ds
Q
)

=−
[
QT
(d
ds
Q
)]T

d

ds
Q=QS since Q is orthogonal

where S =QT
(
d
dsQ

)
. In variational notation, δQ=QS.

Resuming from last time, we can use Lagrange multipliers to determine the form of the operator
2-norm.

‖A‖T2 = sup
‖x‖2

2=1
‖Ax‖22

L(x,λ) =‖Ax‖2−λ(‖x‖−1)
δ[‖Ax‖2] = δ[xTATAx]

= 2δxTATAx
δ[‖x‖2−1] = δ[xTx−1]

= 2δxTx
δL= 2δxT [ATAx−λx] + δλ(‖x‖2−1)

Note that we end up with an eigenvalue problem ATAx = λx. Let A = UΣV T be an svd, then
ATA= V Σ2V T . Since V is orthogonal, ATA has the same eigenvalues as Σ2. Thus, the solutions
correspond to the squared singular values. Hence, ‖A‖2 = σ1(A).

The 2-norm is useful because it has many useful properties, but it is more difficult to compute than
the 1-norm or ∞-norm.

Remark 1 (Orthogonal invariance). As an example of a useful identity, it holds that the euclidean
norm is orthogonally invariant, meaning that ‖Qx‖2 =‖x‖2. This is because ‖Qx‖22 = xTQTQx =
xTx=‖x‖22.

For the Frobenius norm, it holds that

‖A‖F =‖QA‖F =
∥∥∥AQ′∥∥∥

F
for any Q,Q′ orthogonal of proper dimension

The operator 2-norm is also orthogonally invariant.

‖QAU‖2 = sup
‖x‖2=1

‖QAUx‖2

= sup
‖x‖2=1

‖AUx‖2 orthogonal invariance of euclidean norm

= sup
‖z‖2=1

‖Az‖2

=‖A‖2

9

Thus, another way to derive the form of ‖A‖2 is to note that for an svd A= UΣV T ,∥∥∥UΣV T
∥∥∥

2
=‖Σ‖2 = sup∑

z2
j =1

σjzj = σ1

We can also compute the 2-norm of A−1 painlessly. For A = UΣV T , we have A−1 = V Σ−1UT .
Thus,

∥∥∥A−1
∥∥∥

2
= 1/σn.

Recall if |z|< 1, then
∑∞
j=0 z

j = 1
1−z . Also,

∑n
j=0 z

j = 1−zj+1

1−z .

Analogously,
∑∞
j=0A

j = (I−A)−1 if ρ(A)< 1. A weaker condition is for ‖A‖< 1 for some consistent
norm ‖·‖.

∥∥∥(A+E)−1−A−1
∥∥∥=

∥∥∥(A−1−A−1EA−1O(‖E‖2))−A−1
∥∥∥

=
∥∥∥A−1EA−1

∥∥∥+O(‖E‖2)

Another way to do the same analysis is as follows:

(A+E)−1 = (A(I+A−1E))−1

= (I+A−1E)−1A−1

∥∥∥(I+A−1E)−1A−1−A−1
∥∥∥=

∥∥∥∥∥∥
∞∑
j=0

(−A−1E)jA−1−A−1

∥∥∥∥∥∥ if
∥∥∥A−1E

∥∥∥< 1

Using that ∥∥∥∑Xj
∥∥∥=

∥∥∥(I−X)−1
∥∥∥≤∑‖X‖j = 1

1−‖X‖
we have an expression for the sensitivity of an inverse to perturbations.

Error

Say we want to compute x and get x̂. The absolute error is ‖x̂−x‖. The relative error is ‖x̂−x‖‖x‖ .
These are forward error measures.

Backward error measures the error by comparing the computed solution to the exact solution of
a related problem. An example of backward error is an expression like (A+E)x̂= b for some small
E.

Lecture 6: (9/13)

Problem du jour: Show yTAx= tr(AxyT).

Proof. yTAx= tr(yTAx) = tr(AxyT)

10

Say we wish to compute y = f(x). The absolute backward error when we compute ŷ = f(x̂)
is |x̂−x|. The relative backward error is |x̂−x||x| . The condition number relates backward to
forward error.

ŷ−y
y
≤ κf(x)

x̂−x
x

κf(x) = lim
x→0

sup
‖x̂−x‖≤ε

∣∣(f(x̂)−f(x))/f(x)
∣∣∣∣(x̂−x)/x

∣∣
Think of the condition number as follows (which holds when f is real and differentiable):

κf(x) =
∣∣f ′(x)(x̂−x)/f(x)

∣∣
|x̂−x|/|x|

=
∣∣f ′(x)

∣∣|x|∣∣f(x)
∣∣

The following are common sources of error in a computation:

• Error from measurements/ input

• Stochastic error (e.g. in Monte Carlo)

• Error due to termination of iterations

• Error due to floating point

Say we want y =Ax, and we compute ŷ = (A+E)ε. Then the absolute backward error is ‖E‖. The
relative backward error is ‖E‖‖A‖ . The absolute forward error is ‖Ex‖ ≤‖E‖‖x‖. The relative forward
error is ‖Ex‖‖y‖ ≤

‖E‖‖x‖
‖y‖ . We want an expression ‖ŷ−y‖‖y‖ ≤ κ

‖E‖
‖A‖ . We have that

‖ŷ−y‖
‖y‖

≤
(‖A‖‖x‖
‖y‖

)‖E‖
‖A‖

=
(‖A‖‖x‖
‖Ax‖

)‖E‖
‖A‖

after some algebra, ‖A‖‖x‖‖Ax‖ =‖A‖
∥∥∥A−1

∥∥∥. To see this, note

‖A‖
∥∥∥A−1y

∥∥∥
‖y‖

≤‖A‖
∥∥∥A−1

∥∥∥
note that we have been assuming A invertible, since otherwise the definition of backward error does
not apply.

Since we have for the spectral norm that inf ‖Ax‖2
‖x‖2

= σn(A), we have that ‖Ax‖2 ≥ σn(A)‖x‖, so
that ‖A‖‖x‖‖Ax‖ ≤

σ1(A)
σn(A) .

Now, we consider floating point errors, using computation of a dot product as an example. We
begin with the basic algorithm.

11

1 d=0
2 for i = 1:n
3 d = d + x(i) * y(i)
4 end

The computer introduces error in the floating point representation. Due to rounding, we get:

fl(a+ b) = (a+ b)(1 + δ). |δ| ≤ εmachine.

fl(a∗ b) = (a∗ b)(1 + δ).

In the dot product, say we have fl(xi ∗yi) = xiyi(1 + δi) = x̂iyi, where x̂i = (1 + δi).

Thus, we have that di = (di−1 +xiyi(1 + δi))(1 + δ′i) (defining d0 = 0), so that

d0 = 0
d1 = (0 +x1y1(1 + δ1))(1 + δ′1)

= 0 +x1y1(1 + δ1)(1 + δ′1)
≈ x1y1(1 + δ1 + δ′1) since δ1δ2 very small

d2 = (x1y1(1 + δ1 + δ′1) +x2y2(1 + δ2))(1 + δ′2)

≈ (x1y1)(1 + δ1 + δ′1 + δ′2) +x2y2(1 + δ2 + δ′2)
...

...
dn ≈ x1y1(1 + δ̃1) +x2y2(1 + δ̃2) + . . .

where δ̃1 ≤ nεmach, δ̃2 ≤ (n−1)εmach and so on.

Now, if we look at the backward error, say we have dn = x̃T y, where |x̃i−xi|
|xi| ≤ nεmach, so that

‖x̃−x‖∞ ≤ nεmach‖x‖∞.

If we instead look at d= yTx, where d̃= yT x̃, then what we get depends on |y
T x|

‖y‖‖x‖ .

Lecture 7: (9/16)

Binary floating point (IEEE style)

A normalized floating point number is of the form

(−1)s(1.b1b2 . . . bd)2 ·2E

Arithmetic on these numbers is the correct result properly rounded (if there is a tie, round so that
the last digit is zero i.e. round to even). This is true for +,−,×,÷,√ . This means that

fl(a◦ b) = (a◦ b)(1 + δ) δ ≤ εmachine

Note that we cannot represent zero just with a normalized floating point number. There are certain
exceptional representations.

• Subnormal/ denormalized numbers are smaller than the smallest normalized numbers, and
are of the form

(−1)s(0.b1 . . . bd) ·2Emin

Note that 0 is a subnormal number, and there is a positive 0 and a negative 0.

12

• Infinities: ±∞

• Not a Number (NaN)

With the exceptional representations, all floating point operations can return a value in the floating
point system.

Cancellation

If a and b have opposite signs, and are within a factor of 2, then fl(a+ b) = a+ b (no roundoff).
However, we wish to analyze relative error. Consider Â− B̂ = a(1 + δa)− b(1 + δb), where both
inputs have some error. Then the relative error is of the form∣∣∣â− b̂− (a− b)

∣∣∣
|a− b|

= |δaa− δbb|
|a− b|

Error is high when the δ have different sign, such as when the error is approximately of the following
form

δ|a+ b|
|a− b|

Subtraction does not introduce any new error, but it does reveal the error already present in the
inputs.

Consider the problem of finding the roots of 1−2bz+z2. These are of the form

ξ± = b±
√
b2−1

Note that the computation of ξ− by this formula may face cancellation error. Note that ξ− = 1
ξ+

since the last coefficient is 1. This formula is better for computing ξ− when the quadratic formula
faces cancellation error.

Unstable recurrences

Consider the problem of computing

En =
∫ 1

0
xnex−1 dx

One way of doing this is through a recurrence obtained by integration by parts.

E0 = 1− 1
e

En = 1−nEn−1 n≥ 1
Suppose that there is error Ê0 = E0(1 + δ), since we cannot exactly represent e in the machine.
Also, we then have Ên = 1−nÊn−1.

d0 = Ê0−E0 = δE0

Ên = 1−nÊn−1

En = 1−nEn−1

dn =−ndn−1

13

Thus, we see that the errors are of the form δn = (n!)δE0. Note that if we instead start from large
n and compute the recurrence backwards, then the initial error of representation is supressed by
an n! factor instead of amplified.

Two other issues of floating point arithmetic are:

• Undetected underflow (note that overflow is generally easy to detect). This means that the
1 + δ model no longer holds, since the relative error of representation can be quite high
(especially as we approach 0).

• NaNs and branches.
1 if x <= 0
2 disp (" <=0")
3 else if x > 0
4 disp (" >0")
5 else
6 disp(’uh -oh’);
7 end

Running this script causes ”uh-oh” to display.

Example 0.3 (Geometric predicates). We finally present a more positive example. An example
of a geometric predicate is whether two points are on the same side of a line or on different sides.
Say we have points C,D and two points that determine a line A,B. One way to solve this is by
looking at

det[B−A,D−A]
det[B−A,C−A]

If these two determinants have the same sign, then predict that the points are on the same side.
Otherwise, predict that they are on different signs.

Assume that all points are in [1,2]2. The bad news is that we can compute the signs incorrectly
if the usual formula is carried out in the input precision. The good news is that if the inputs are
single precision and the intermediates are double precision, then the signs will be correct.

For a sketch of why this is, note that all of the entries of this matrix will we computed exactly.[
xB−xA xD−xA
yB−yA yD−yA

]
Moreover, all products will be exactly computed since the double precision intermediates have
enough space to hold the exact result of the multiplication of the single precision numbers.

Lecture 8: September 18

Problem du jour: |z|< 1, Sn =
∑n
j=1 z

j = 1−zn+1

1−z → 1
1−z .

Consider Ŝn computed by the recurrence

Ŝ0 = 0
Ŝk+1 = (zŜk + 1)(1 + δk), |δk|< ε

What can we say about the relative error?

14

Gaussian elimination/ LU factorization

For a matrix A, we seek a decomposition

PA= LU

where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. We go
through such a procedure to decompose an example matrix.

A=

1 4 7
2 5 8
3 6 10

 1 0 0
−2 1 0
0 0 1

1 4 7

2 5 8
3 6 10

=

1 4 7
0 −3 −6
3 6 10

 1 0 0
−2 1 0
−3 0 1

1 4 7

2 5 8
3 6 10

=

1 4 7
0 −3 −6
0 −6 −11

Note that 1 0 0
−2 1 0
0 0 1

 and

 1 0 0
0 1 0
−3 0 1

commute, and their product is

 1 0 0
−2 1 0
−3 0 1

. Thus, the operations are independent, and the order

that they are done does not matter.

A general Gauss transformation is of the form I− τeTk where τj = 0 for j ≤ k. Continuing the
above process for one more step, we get to1 4 7

0 −3 −6
0 0 1

Thus, we have M2M1A= U , where M1 is the first transformation and M2 is the second. We then
have M2M1Ax= Ux=M2M1b.

Upper triangular linear systems are nice because they are easy to solve by backward substitu-
tion. Moreover, note that if we have a block upper triangular linear system, then block backward
substitution can be used. Thus, for a linear system of the form[

A B
C D

][
x
y

]
=
[
f
g

]
we can do block Gaussian elimination,[

I 0
−CA−1 I

][
A B
C D

]
=
[
A B
0 D−CA−1B

]

15

S = D−CA−1B is the Schur complement. Now, we can use block backward substitution to
solve [

A B
0 S

][
x
y

]
=
[

f
g−CA−1f

]

1 % Solve Ax=b
2 % triangular reduction
3 for j = 1:n-1
4 tau = A(j+1:n, j) / A(j,j);
5 A(j+1:n, j:n) = A(j+1:n, j:n) - tau * A(j, j:n);
6 b(j+1:n) -= tau*b(j);
7 end
8

9 % back substitution
10 for i = n: -1:1
11 x(i) = (b(i) - A(i, i+1:n)*x(i+1:n))/A(i,i)
12 end

The number of operations for the triangular reduction is approximately
∑n−1
j=1 j

2 ≈
∫ n

0 x
2 dx= 1

3n
3.

1 % Solve Ax=b, version 2
2 % Stores intermediate multipliers tau in A’s lower triangle
3 for j = 1:n-1
4 A(j+1:n,j) = A(j+1:n,j)/A(j,j)
5 A(j+1:n,j+1:n) -= A(j+1:n,j)*A(j,j+1:n)
6 end
7

8 for j = 1:n-1 % implicitly solve with L
9 b(j+1:n) = b(j+1:n) - A(j+1:n) * b(j)

10 end
11 for i = n: -1:1
12 % backsub
13 end

Thus, for solving multiple linear systems with the same A but different right hand side, we only
dod the O(n3) decomposition once.

Note that our decomposition is Mn−1 · · ·M1A = U where the Mk are unit lower triangular. Since
such matrices form a group, we have that Mn−1 · · ·M1 is unit lower triangular, and hence A =
LU = M−1

1 · · ·M
−1
n−1U , where L is again unit lower triangular due to the group property. L has

entries which are the multipliers τ . Thus, the loop in the algorithm above that transforms b before
backsubstitution is an implicit solve with L.

Lastly, a Gauss transformation is geometrically a shear transformation in a particular coordinate
direction. These do not change volume and thus can be used to compute volumes of parallelipipeds.

Lecture 9: September 20

We still consider a decomposition PA = LU . Given a decomposition A = LU , to solve a linear
system Ax = b, we see that LUx = b, so first we solve Ly = b and then Ux = y. These two solves
are O(n2) once we have the decomposition.

16

Consider the block submatrix structures

A=
[
A11 A12
A21 A22

]
L=

[
L11 0
L21 L22

]
U =

[
U11 U12
0 U22

]

We if A= LU , we have that

LU =
[
L11U11 L11U12
L21U11 L22U22 +L21U12

]

• L11U11 =A11 we can compute by LU factorization

• L11U12 =A12, so U12 = L−1
11 A12 give linear equations that can be solved

• L21U11 =A21, so L21 =A21U
−1
11

• L22U22 +L21U12 = A22, so we compute the LU factorization L22U22 = A22−L21U12. S =
A22−L21U12 is a Schur complement.
Note that S =A22−A21U

−1
11 L

−1
11 A12 =A22−A21A

−1
11 A12.

Say we want the trailing submatrix of A−1. So we want to solve for Y in[
A11 A12
A21 A22

][
X
Y

]
=
[
0
I

]

After Gaussian elimination, we have[
A11 A12
0 A22−A21A

−1
11 A12

][
X
Y

]
=
[
0
I

]

So in backward substitution, we solve SY = I. Thus, we have another way to think about the Schur
complement: it is an inverse of a submatrix of A−1.

Using blocked LU factorization can be efficient by taking advantage of L3 BLAS-based routines.

Proposition 1. In decomposing A= LU , Gaussian elimination computes

A+E = L̂Û

where ‖E‖ ≤ nε
∥∥∥L̂∥∥∥∥∥∥Û∥∥∥. Where L̂ and Û are exactly computed factors.

Note that this gives a weak backward error bound if
∥∥∥L̂∥∥∥ and

∥∥∥Û∥∥∥ can blow up in size. For instance,
this can happen when we have small diagonal elements appearing in the process, since then the
divisions in Gauss transformation steps are by small numbers.

Here we have rough argument for the proposition.

ûjk = fl(ajk−
j−1∑
i=1

l̂jiûik)

17

Now, we use our previous dot product analysis

ûjk = ajk(1 + δ0)− (
j−1∑
i=1

l̂jiûik)(1 + δ̃+ δ0)

ajk = 1
1 + δ0

[
ûjk− (

j−1∑
i=1

l̂jiûik)(1 + δ̃+ δ0)
]

= ûjk−
j−1∑
i=1

l̂jiûik +ejk

In partial pivoting, at each step, we permute rows such that all multipliers are ≤ 1 in magnitude.
This controls the magnitude of the entries of L. Then we have

‖E‖
‖A‖

≤
nε
∥∥∥L̂∥∥∥∥∥∥Û∥∥∥
‖A‖

≤
n2ε
∥∥∥Û∥∥∥
‖A‖

Where
∥∥∥Û∥∥∥/‖A‖ is called the pivot growth factor. Note that we can also consider a decomposition

PAQ = LU , in which we use row or column pivoting (rook pivoting). We can also decompose
PAQ = LU where we pivot so that the highest-magnitude element in the remaining submatrix
on the diagonal. Other methods include communication-avoiding variants, such as tournament
pivoting. These work well for parallel setups. CALUTP = communication-avoiding LU with
tournament pivoting.

Lecture 10: September 23

Problem du jour:

Solving Ax= b by Gaussian elimination with partial pivoting gives (A+E)x̂= b with ‖E‖‖A‖ ≤ 3n2ε‖U‖‖A‖ .
The factor of 3 comes from the errors of the 3 steps of decomposition, forward substitution, and
backward substitution.

We now discuss how backward error and conditioning bounds forward error. Suppose the exact
solution is Ax= b. Using linearized perturbation analysis,

δAx+Aδx= δb

δx=A−1(δb− δAx)

we want to control δx, so we want ‖δx‖‖x‖ in terms of ‖δA‖‖A‖ and ‖δb‖‖b‖ .

‖δx‖
‖x‖

=

∥∥∥A−1δb−A−1δAx
∥∥∥

‖x‖

≤

∥∥∥A−1δb
∥∥∥+

∥∥∥A−1δAx
∥∥∥

‖x‖

18

we bound the first term as such ∥∥∥A−1δb
∥∥∥

‖x‖
≤

∥∥∥A−1
∥∥∥‖δb‖
‖x‖

≤

∥∥∥A−1
∥∥∥‖δb‖

‖b‖/‖A‖

=
∥∥∥A−1

∥∥∥‖A‖︸ ︷︷ ︸
κ(A)

‖δb‖
‖b‖

where we use that

‖Ax‖=‖b‖ =⇒ ‖A‖‖x‖ ≥‖b‖ =⇒ ‖x‖ ≥ ‖b‖
‖A‖

also, we bound the other term by ∥∥∥A−1δAx
∥∥∥

‖x‖
≤

∥∥∥A−1
∥∥∥‖δA‖‖x‖
‖x‖

=
∥∥∥A−1

∥∥∥‖δA‖
= κ(A)‖δA‖

‖A‖

Now, suppose we have a true solution Ax = b, and we have an approximation Âx̂ = b̂. Then we
have that

Âx̂−Ax= b̂− b
Âx̂−Ax̂+Ax̂−Ax= b̂− b

(Â−A)︸ ︷︷ ︸
E

x̂+A(x̂−x) = b̂− b

x̂−x=A−1(b̂− b−Ex̂)

note the similarity to the above expressions from linearized pertubation analysis. With some
algebra, we get that

‖x̂−x‖
‖x‖

≤ κ(A)
(‖E‖
‖A‖

· ‖x̂‖
‖x‖

+

∥∥∥b̂− b∥∥∥
‖b‖

)
assuming that

∥∥∥A−1E
∥∥∥< 1, we consider the relationship between (A+E)x̂= b and Ax= b.

(A+E)x̂=Ax

(I+A−1E)x̂= x

x̂= (I+A−1E)−1x

19

so that by summing the Neumann series we have that

(I+A−1E) =

∥∥∥∥∥∥
∞∑
j=0

(−A−1E)j
∥∥∥∥∥∥

≤
∞∑
j=0

∥∥∥A−1E
∥∥∥j

= 1
1−
∥∥A−1E

∥∥
‖x̂‖
‖x‖
≤ 1

1−
∥∥A−1E

∥∥
then we have that

‖x̂−x‖
‖x‖

≤ κ(A)
1−κ(A)‖E‖‖A‖

(‖E‖
‖A‖

+

∥∥∥b̂− b∥∥∥
‖b‖

)

Iterative refinement

Suppose that we compute L̂Û = A+E = Â, where E is modest (so not necessarily very well
controlled). Consider the following iteration

x0 =A−1
(

= Û−1(L̂−1b)
)

Ax0 = b− r0 r0 = b−Ax0

A(x0−x)︸ ︷︷ ︸
u0

=−r0 subtracting Ax= b

x= x0 +A−1r0

x1 = x0 + Â−1r0

We have the iteration

x0 = Â−1b

xk+1 = xk + Â−1(b−Axk)

Thus, we have

x= x+ Â−1(b−Ax)
ek+1 = ek + Â−1Aek

= (I− Â−1A)
= Â−1(Â−A)ek
= (Â−1E)ek

so that the errors satisfy
‖ek+1‖ ≤

∥∥∥Â−1E
∥∥∥‖ek‖ ≤∥∥∥Â−1E

∥∥∥k‖E0‖

so the errors go to zero if
∥∥∥Â−1E

∥∥∥< 1.

20

Lecture 11: September 25

Problem du jour: Suppose we have a finite dimensional vector space with a norm such that

‖x‖ ≤
∥∥ |x| ∥∥

for any vector x. Show that

|x| ≤|y| elementwise =⇒
∥∥ |x| ∥∥≤∥∥ |y| ∥∥

Let X be a normed vector space, and X∗ its dual space, the set of all linear maps X → R. We
define the dual norm on elements x∗ ∈X∗ as∥∥x∗∥∥∗ = sup

z∈X,‖z‖=1

∣∣x∗z∣∣
Recall that for X an inner product space with Euclidean norm, l∗ ∈ X∗ satisfies l∗x = 〈y,x〉.
‖l∗‖∗ =‖y‖. l∞ and l1 are dual to each other. Also, for 1/p+ 1/q = 1, we have that lp and lq are
dual to each other.

Suppose ‖x‖ ≤
∥∥ |x| ∥∥ for any x. What is a u such that u∗|x| =‖x‖ and ‖u∗‖ = 1. We have that

u∗|x|=
∑n
i=1ui|xi|.

If ui < 0, then consider y such that yj = |x|j for j 6= i, and yi =−|x|i. Note |y|= |x|. Then we have

u∗y > u∗|x|=
∥∥|x|∥∥∣∣u∗y∣∣≤∥∥u∗∥∥‖y‖

so we have that u has no negative entries. Now, we have that∥∥|x|∥∥= u∗|x| ≤ u∗|y|
≤
∥∥u∗∥∥∥∥|y|∥∥

Condition Estimation

Now, we consider, how do we estimate
∥∥∥A−1

∥∥∥ given PA= LU in less than O(n3)? We wish to find∥∥∥A−1
∥∥∥

1
= max
‖x‖1=1

∥∥∥A−1x
∥∥∥

1

= max
ξ∈{±1}n

max
‖x‖1=1

ξTA−1x

note also that {±1}n = {ξ | ‖ξ‖∞ = 1}. To optimize, we consider

ξTA−1(x+ δx) = ξTA−1x+ ξTA−1δx

this can be done in O(n2) time. In MATLAB and Julia, condest is using a routine based on this
condition estimate.

21

Consider again Âx̂ = b, Â = A+E, where |E| ≤ ϕ(n,ε)|A|. Instead of using norms to study the
error, we consider componentwise errors. We can derive scale invariant condition numbers, so that
for instance differences in units of measurement do not affect the condition number.

Ax= b

Aδx+ δAx= 0
δx=−A−1δAx

|δx|=
∣∣∣A−1

∣∣∣|δA||x|
≤
∣∣∣A−1

∣∣∣|A|ϕ(n,ε)

assuming we have a norm with ‖x‖ ≤
∥∥|x|∥∥, we have

‖δx‖ ≤
∥∥∥∥∣∣∣A−1

∣∣∣ |A| ϕ(n,ε)
∥∥∥∥

We define
κrel(A) =

∥∥∥∥∣∣∣A−1
∣∣∣ |A|∥∥∥∥

let us consider the effect of scaling A

κrel(A) =
∥∥∥|DA|−1|DA|

∥∥∥
=
∥∥∥∥∣∣∣A−1D−1

∣∣∣|DA|∥∥∥∥
=
∥∥∥∥∣∣∣A−1

∣∣∣∣∣∣D−1
∣∣∣|D||A|∥∥∥∥

=
∥∥∥∥∣∣∣A−1

∣∣∣|A|∥∥∥∥= κrel(A)

so this condition number is invariant under scaling.

Now, consider the residual r = b−Ax̂. Then we have

Ax̂= b− r
‖x̂−x‖
‖x‖

≤ κ(A)‖r‖
‖b‖

previous computation

turning to a matrix error, we wish to find

min ‖E‖ s.t. (A+E)x̂= b

observe that

Ax̂= b− r(
A+ r

x̂T

‖x̂‖22

)
x̂= b

this is a rank one perturbation of A in the direction that matters.

22

Symmetric factorization

Let A = AT for some real matrix A. We associate the quadratic form ϕ(x) = xTAx. Principal
curvatures are eigenvalues, or we have up, down, flat directions. If Z is nonsingular, then ZTAZ
and A have the same inertia.

The standard symmetric variant of LU is PAP T = LDLT , where L is unit lower triangular and D
is diagonal. Note that D has the same inertia as A. If A is positive definite, then we have A=LLT ,
where L is lower triangular. This is called the Cholesky factorization.

The algorithm for Cholesky factorization is very similar to LU factorization, except we need not
pivot for stability.

Lecture 12: September 27

The algorithm for Cholesky factorization is much like Gaussian elimination. Suppose A is symmetric
positive definite, and break it into blocks.

[
a11 a12
aT12 A22

]
=
[
l11 0
l21 L22

][
l11 lT21
0 L22

]

Then we have that

a11 = l211

aT12 = l21l11

A22 = L22L
T
22 + l21l

T
21

note that a11 6= 0 due to A being spd, so l11 6= 0. Then l21 is determined, (there is no division by
zero). Finally to find L22, we recurse, and find the smaller Cholesky factorization

L22L
T
22 =A22− l21l

T
21

an argument can be made for why A22− l21l
T
21 is spd, so this is possible. Note that by properties of

spd matrices, no pivoting is needed. The Cholesky factor L is often analogous to the square root
of real numbers in certain applications.

Diagonal Dominance

We call a matrix A strictly diagonally dominant if∣∣ajj∣∣>∑
i 6=j

∣∣aij∣∣ j = 1, . . . ,n

Decompose A into D+F , where D is a diagonal matrix containing the diagonal of A, and F is the
off diagonal. Then A is strictly diagonally dominant if and only if∥∥∥FD−1

∥∥∥
1
< 1

Then we can write A = (I+FD−1)D. This can be a useful decomposition, as D is easy to solve
with. The Schur complement is also diagonally dominant, so Gaussian elimination can be done
without pivoting.

23

Tridiagonal Matrices

Consider A a symmetric positive definite tridiagonal matrix, with diagonal given by (α1, . . . ,αn)
and (β1, . . . ,βn−1). Applying an iteration of Cholesky factorization, we have the lower right block
S, where

S =

α2−β2

1/α1 β2

β2 α3
. . .

.

Each iteration takes constant time, so Cholesky factorization takes linear time for such matrices.
Tridiagonal matrices are a special case of banded matrices.

Sherman-Morrison-Woodbury

Suppose we have the linear system [
A B
C D

][
x
y

]
=
[
f
g

]

Blocked Gaussian elimination gives a Schur complement of S = D−CA−1B. We have Sy = g−
CA−1f and Ax= f −By.

Consider a similar problem
(A+UW T)x= f

where A is updated by the (low rank) matrix UW T . Define y = W Tx. Then we can rewrite the
system [

A U
W−1 −I

][
x
y

]
=
[
f
0

]
Then we have

x= (A−1−A−1U(I+W TA−1U)−1W TA−1)f

so we can rewrite

(A+UW T)−1 =A−1−A−1U(I+W TA−1U)−1W TA−1

this is the Sherman-Morrison-Woodbury formula. Note if we already have A−1, then to update
A−1, the only inverse that needs to be computed is of I +W TA−1U , which is a small matrix if
UW T is low rank.

Vandermonde matrices

Suppose we have a degree n−1 polynomial p(x) =
∑n
j=1 cjx

j−1, and we have sample points (xi,fi).
We wish to find the cj that allow p to interpolate the points. If we define Vij = xj−1

i , then V c= f is
our system, where c= (c1, . . . , cn). This system is quite ill-conditioned, so other methods (of which
there are an abundance) should be used for polynomial interpolation.

24

Circulant matrices

A circulant matrix is one of the form

a1 a2 a3 . . . an
an a1 a2 . . . an−1
an−1 an a1 . . . an−2

...
a1 . . . a1

such a matrix is determined by the n elements (a1, . . . ,an). The linear system Cx= y can be solved
very quickly. C is diagonalized by the Fourier transform. The F be the Fourier transform matrix.
Then

FΛF−1x= y

x= Fλ−1F−1y

so the system can be solved in O(n logn) time.

Toeplitz and Hankel matrices also have fast linear solve methods due to their structure.

Lecture 13: 9/30

Problem du jour: Argue that if Z ∼N(0, I), then RTZ ∼N(0,C), where C = RTR is a Cholesky
factorization.

Recall if X ∼N(0,C), then
p(x)∝ exp

(
− 1

2x
TC−1x

)
If C =RTR, C−1 =R−1R−T . Then for z =R−Tx, so that x=RT z, we have

p(x)∝ exp
(
− 1

2(xTR−1)(R−Tx)
)

= exp
(
− 1

2z
T Iz

)

Sparse LU factorization

Naive LU factorization on a sparse matrix may destroy the sparsity pattern. For the example from
our homework, the matrix

× ×
× ×

.
× × . . . ×

=

×
×

. . .
× × . . . ×

× ×
× ×

.
×

25

has sparse L and U factors, whereas
× × . . . ×
× ×
... . . .
× ×

has potentially full fill.

In Gaussian elimination, we want to reduce filling and maintain stability. General LU is of the
form:

PAQ= LU

where P is a permutation matrix chosen for stability, and Q is a permutation matrix chosen to
reduce fill.

In this lecture, we focus on Cholesky factorization, since then we need not consider pivoting for
stability. We define fill as nonzeros in L and U that are zero in A. We can think about fill by
taking our matrix and associating it with a graph. Consider A ∈ Rn×n as a graph on n nodes,
where we define

V = {1,2, . . . ,n} E = {(i, j) | aij 6= 0}

Eliminating by node i causes all neighbors of i to be connected in a clique in the Schur complement
graph.

× ×
× ×

× × × ×
× ×
× ×

× × × ×
× × ×

The graph of this matrix is a tree. For any tree, we can do Gaussian elimination without fill. We do
this by eliminating by the leaves first. For general sparse matrices with cycles, we cannot eliminate
fill. To do Gaussian elimination on matrices with general graphs, we approximately treat the graph
as a tree.

For instance, for a square mesh graph, we use nested dissection. The general idea is to:

• Find a small vertex separator such that paths between one side and the other must go through
the separator

• Recurse on the separated subgraphs

We can look at connectivity at the block level. Then we do not have fill that falls outside of
the block pattern. On an n×n mesh, with O(n2) = O(N) unknowns, then unstructured (dense)
Gaussian elimination is O(N3) =O(n6). With a rough analysis for nested dissection, eliminating the
final Schur complement that has n nodes that are densely connected together contributes O(n3).
We also have two Schur complements at approximately half the size, ≈ n2/2 nodes. This takes
2O((n/2)3) ≈ c2(n/2)3 = (c/4)n3 time. The next step takes c4(n/2)3 = (c/2)n3. Thus, the total
cost is about O(n3) = O(N3/2) due to the geometric sum structure. This is becase forming each
Schur complement is (asymptotically) less expensive than eliminating it.

26

On a 3D mesh, of size n×n×n, N = n3, then dense solves take O(N3) = O(n9). The top level
separator (an n×n× 1 slice) has n2 degrees of freedom. Gaussian elimination on this separator
Schur complement takes O((n2)3) = O(n6) = O(N2). Again this determines the asymptotic cost.
Thus, people often use additional structure of the Schur complements (depending on the problem)
or other methods for 3D meshes.

Lecture 14: 10/2

Least squares

Say we have observations T1, . . . ,Tm with corresponding independent variables C1, . . . ,Cm, and we
wish to fit a function T ≈ αC+β. We can frame this as solving the least-squares problem

min
α,β

m∑
i=1

(
Ti− (αCi+β)

)2

equivalently, in matrix form,

min
α,β

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

C1 1
...

...
Cm 1

︸ ︷︷ ︸

A

[
α
β

]
︸︷︷︸
x

−

T1
...
Tm

︸ ︷︷ ︸

b

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

so our abstract problem is for A ∈ Rm×n, m> n,

min
x

1
2‖Ax− b‖

2

let ϕ(x) = 1
2‖Ax− b‖

2. Then we have

ϕ(x) = 1
2(Ax− b)T (Ax− b)

= 1
2x

TATAx−xTAT b+ 1
2b

T b

δϕ(x) = 1
2
(
δxTATAx+xTATAδx−2δxTAT b

)
only perturbing x

= δxT (ATAx−AT b)

setting the derivative equal to zero, we have

ATAx=AT b

in different notation,

ϕ(x) = 1
2r

T r

δϕ(x) = δrT r

= δxTAT r

27

because δr = Aδx. Setting this to zero, we want r so that AT r = 0. Thus, these equations are
called the normal equations, since finding the r where this quantity is zero is finding an r that is
orthogonal to AT . The normal equations are

min 1
2‖Ax− b‖

T =ATAx=AT b =⇒ x= (ATA)−1AT b

we define A† = (ATA)−1AT . This is the Moore-Penrose pseudoinverse. Note that it is in fact
the inverse of A for nonsingular A.
Definition 0.1. A pseudoinverse of a full column rank A ∈ Rm×n where m> n is a B ∈ Rn×m
such that BA= I.

The Moore-Penrose pseudoinverse is an example of a pseudoinverse.

Π =AB where B is a pseudoinverse satisfies

Π2 =ABAB =AB = Π

so that it is a projector. For the Moore-Penrose pseudoinverse, we have a projector Π = AA†. In
our least-squares problem, Ax= Πb. Also, b−Ax= (I−Π)b.

Statistics and least squares

Now, we consider the statistical justification for the least-squares problem. Suppose we have samples
from N(Ax,Σ2), where x is unknown. Given a sample b, we wish to estimate x. We want a simple
statistic, so we take a linear estimator x̂= Lb for some linear function L. We desire this estimator
to be unbiased, so

x= E[x̂] = E[Lb] = LE[b] = LAx

we wish to find a pseudoinverse that minimizes the total variance V ar[x̂].

x̂= LAx

V ar[x̂] = E[x̂x̂T]−E[x̂]E[x̂]T

. . .

To solve the normal equations ATAx=AT b, we have different methods.

• ATA=RTR (Cholesky). This implies that

RTRx=AT b

Rx=R−TAT b

x=R−1(R−T (AT b))

we consider the intermediate factorization

R−TAT = (AR−1)T =QT

note that

QTQ=R−TATAR−1

=R−TRTRR−1

= I

so Q has orthogonal columns. This gives the economy QR factorization A=QR

28

• A=QR (QR) is thus another method for solving the normal equations

• A= UΣV T (SVD). Then we have A† = V Σ−1UT .

Lecture 15: 10/4

Problem du jour: Suppose A is spd with a Cholesky factorization A=RTR. How does on compute
δR (in terms of δA)? Here is a hint:

δA= δRTR+RT δR

R−T δAR−1 = R−T δRT︸ ︷︷ ︸
lower triangular

+ δRR−1︸ ︷︷ ︸
upper triangular

Note that

1
2‖Ax− b‖

2︸ ︷︷ ︸
ϕ

= 1
2〈Ax− b,Ax− b〉

δϕ= 〈Aδx,Ax− b〉

so to minimize ϕ(x), we want 〈Aδx,Ax− b〉= 0 for all δx.

Note that the expectation
E[XY] =

∫
X(z)Y (z) dµ(z)

satisfies the properties

E[XY] = E[Y X]
E[αXY] = αE[XY]

E[(X1 +X2)Y] = E[X1Y]E[X2Y]
E[X2]≥ 0
E[X2] = 0 ⇐⇒ X = 0 if disallow zero variance random variables

so that the expectation is an inner product.

In finite dimensions, we can always choose a basis such that

〈x,y〉M = yTMx M some spd matrix

Consider the L2[−1,1] inner product on polynomials

〈p,q〉L2[−1,1] =
∫ 1

−1
p(x)q(x) dx

〈
d∑
j=0

aix
i,

d∑
j=0

bjx
j〉L2 =

∑
i

∑
j

aibj〈xi,xj〉L2

= bTMa, Mij = 〈xi−1,xj−1〉L2

29

Gauss-Markov

Suppose we have b ∼ N(Ax,Σ2), and we wish to find the best linear unbiased estimator (BLUE)
for x. The likelihood is given by

C · exp
(
− 1

2(b−Ax)TΣ−2(b−Ax)
)

to maximize the likelihood, we solve
min‖b−Ax‖2Σ−2

so we want

(Aδx)TΣ−2(b−Ax) = 0
(ATΣ−2A)x=ATΣ−2b

let A†Σ−2 = (ATΣ−2A)−1(ATΣ−2). This is a pseudoinverse. If Σ is the identity, then this is the
Moore-Penrose pseudoinverse as seen before.

We require that our estimator x̂ satisfies

x̂= Lb linear in data
E[x̂] = LAx= x i.e. LA= I unbiased

Let L be of the form L = A†Σ−2 +F for any F such that FA = 0, so that LA = I. Then we have
that

Lb∼N(x, LΣ2LT)

LΣ−2LT = (A†Σ−2 +F)Σ2(A†Σ−2 +F)T

=A†Σ2(A†)T + 2[A†Σ2F T]S +FΣ2F t

where [B]S denotes the symmetric part of B. The middle summand is

(ATΣ−2A)−1ATΣ−2Σ2F = (A†)−1(FA)T

thus, the minimizing choice of variance is F = 0 where we use the partial order A� B if A−B is
positive semidefinite. Hence, x=A†Σ−2b is the BLUE.

QR Factorization

Let A ∈ Rm×n. The full QR factorization is of the form A = QR where QTQ = I, R is upper
triangular, Q ∈ Rm×m, and R ∈ Rm×n.

The economy QR factorization is of the form A = Q̂R̂, where Q̂T Q̂ = I, R̂ is upper triangular,
Q̂ ∈ Rm×n, and R̂ ∈ Rn×n.

The Gram-Schmidt process is of the form

• a1 = q1r11, r11 =‖a1‖

• a2− q1 (qT1 a2)︸ ︷︷ ︸
r12

= q2r2

30

•
...

...

• ak−
∑k−1
j=1 qj q

T
j aj︸ ︷︷ ︸
rjk

= qkrk

with this construction, we have that ak =
∑k
j=1 qjrjk. Thus, we can reconstruct

[
a1 a2 . . .

]
=
[
q1 q2 . . .

]
r11 r12 . . .

r22 . . .
. . .

this gives a QR factorization. However, Gram-Schmidt is foward-unstable. The big idea to compute
a QR factorization in a nice way is to think of an LU−like sequence of operations, but instead
of Gauss transforms (shears), we use orthogonal transforms consisting of reflections (Householder)
and rotations (Givens).

Lecture 16: 10/7

We present a method to compute the QR factorization using orthogonal transformations. A step
of Gaussian elimination is of the form:[

1 0
−a21
a11

I

][
a11 a12
a21 A22

]
=
[
a11 a12
0 S

]

We want a reflection that maps

v =
[
x
y

]
7→
[
±‖v‖

0

]
Note that the only nonzero entry of the result must be ±‖v‖ since orthogonal transformations
preserve the 2-norm. We wish to find the plane of reflection, as defined by a vector normal to it.
The normal direction is given by v±‖v‖e1. We choose the sign that avoids cancellation errors, so
choose sign(v1). Normalize this to get u, and define H = I−2uuT .

Thus, our algorithm to get the reflector is

• ũ= v±‖v‖e1 (sign chosen as sign(v1))

• u= ũ
‖ũ‖

• H = I−2uuT

Our algorithm for Householder QR is
1 for j = 1:n
2 u_j = HH(A(j:m), j)
3 Store u_j
4 % Apply reflection to A:
5 A(j:m, j:n) = A(j:m, j:n) - 2* u_j *(u_jˆT A(j:m,j:n))
6 end

31

The total cost is O(mn2).

Now, we consider decomposing a matrix using rotations. Thus, we want a matrix of the form[
c −s
s c

]
c2 +s2 = 1

that satisfies [
c −s
s c

][
x
y

]
=
[
∗
0

]
which implies that (s,c) is orthogonal to (x,y), and thus (c,−s) is parallel to (x,y). Thus, we have
that

c= x√
x2 +y2 s= −y√

x2 +y2

Applying Givens rotations or Householder reflectors to a matrix is backward-stable. These are
orthogonal transformations, the nicest types.

Consider the case of a sparse matrix A. If A is sparse, and ATA is ”nice” (in which elimination
does not produce much fill), then since R is also the Cholesky factor in a QR factorization, we have
a sparse R. Since

ATAx=AT b =⇒ Rx=R−TAT b

this is very nice.

Now, suppose we have a constrained optimization problem

min
x
‖Ax− b‖2 s.t. Cx= d

where A ∈ Rm×n for m> n, C ∈ Rk×n for k < n. We can use Lagrange multipliers. Let L(x,λ) =
1
2‖Ax− b‖

2 +λT (Cx−d). Then we have

δL= δxTAT (Ax− b) + δxTCTλ+ δλ(Cx−d)

=
[
δx
δλ

]T ([
ATA CT

C 0

][
x
λ

]
−
[
b
d

])

Another way to change the problem is to consider Cx= d, and suppose CT =
[
Q1 Q2

][R1
0

]
. Then

the constraint is RTQTx= d. Define y =QTx, so that[
R1 0

][y1
y2

]
= d

Note that y1 is contrained by this equation, and y2 is unconstrained.

Lecture 17: 10/9

Say we have the vectors 1,x,x2, and want a QR decomposition, where we use the L2 inner product.

[
1 x x2

]
=
[
L0(x) L1(x) L2(x)

]r11 r12 r13
r22 r23

r33

32

where L0,L1, and L2 are orthogonal polynomials of degree at most 2. We have two ways to approach
this. First, we have ATA=RTR and Q=AR−1. Here we have the Gram matrix and the Cholesky
factor

ATA=

2 0 2
3

0 2
3 0

2
3 0 2

5

 R=

√

2 0
√

2
3

0
√

2
3 0

0 0
√

8
45

The other method to compute the decomposition is by Gram-Schmidt. The resulting L0,L1,L2 are
Legendre polynomials.

Error Analysis of Least Squares

We consider the sensitivity of x and the residual r =Ax− b in the solution of minx‖Ax− b‖2. Say

we have A=
[
1
0

]
, b=

[
ε
1

]
. Then we have x= A†b= ε. If we instead have b=

[
−ε
1

]
, then we have

x = A†b = −ε. Note that this is a large relative change in x compared to a small relative norm
change in b.

We let θ be the angle between b and the range space of A,

cos(θ) = ‖Ax‖
‖b‖

sec(θ) = ‖b‖
‖Ax‖

tan(θ) = ‖r‖
‖Ax‖

For general A, define the condition number

κ(A) =‖A‖
∥∥∥A†∥∥∥= σ1(A)

σn(A)

since we are using the 2-norm.

First, we consider sensitivity of y =AT b. We have that

δy = δAT b+AT δb

‖δy‖ ≤‖δA‖‖B‖+‖A‖‖δb‖
‖δy‖
‖y‖

≤ ‖δb‖‖b‖∥∥AT b∥∥ +‖A‖‖δb‖∥∥AT b∥∥
= ‖A‖‖b‖∥∥AT b∥∥

(‖δA‖
‖A‖

+‖δb‖
‖b‖

)
Let A= UΣV T be an economy SVD. Then we have

‖A‖‖b‖ ≤ σ1(A)‖b‖∥∥∥AT b∥∥∥≥ σn(A)
∥∥∥UT b∥∥∥

‖A‖‖B‖∥∥AT b∥∥ = σ1(A)
σn(A)

‖b‖
UT b

= κ(A)sec(θ)

33

Now, we consider the conditioning of x= (ATA)−1AT b. Then we have

δx=−(ATA)−1(δATA+AT δ(ATA)−1AT b+ (ATA)−1(δAT b+AT δb)

After some basic work, we have

‖δx‖
‖d‖

κ2(A)≤
(
κ2(A)tan(θ) +κ(a)

)‖δA‖
‖A‖

+κ(A)sec(θ)‖δb‖
‖b‖

Lecture 18: 10/11

Problem du jour: If U =R(A) and V =R(B), how can we compute

max
u∈U

min
v∈V

∠(u,v)

∠(u,v) being the angle between u and v.

Say we have U,V ∈ Rn×k where UTU = I and V TV = I. Our problem is

min
u=Ux∈U

max
v=V y∈V

cos(∠(u,v))

min
u=Ux∈U
‖x‖=1

max
v=V y∈V
‖y‖=1

vTu= yTV TUx

There exists a choice of basis for spaces such that the problem is

min
‖x‖=1

max
‖y‖=1

yTΣx

where the solution happens to be σk(vTu).

Now, consider the largest angle between R(A) and R(A+E). This depends on κ(A)‖E‖‖A‖ . Thus, we
have issues when κ(A)� 1. This occurs with ill-posed problems, such as when we have correlated
explanatory variables.

Lecture 19: 10/16

Problem du jour: Suppose A ∈ Rm×n, m> n. How can we solve

min 1
2‖x‖

2 s.t. ATx= b

note that the linear system is underdetermined, so there are multiple x satsifying it. Say we have

a full QR decomposition A=QR=
[
Q1 Q1

][R1
0

]
. Then our constraint is RT1 QT1 x= b. Assuming

A has full column rank, we have QT1 x=R−T1 b. We can write

x=Q1Q
T
1 x+Q2Q

T
2 x

=Q1R
−T
1 b+Q2y

‖x‖2 =
∥∥∥R−T1 b

∥∥∥2
+‖y‖2

34

Thus, to minimize ‖x‖2, set y = 0, so we have the minimizing x as x=Q1R
−T
1 b.

Let A= UΣV T be a full SVD. The general Moore Penrose pseudoinverse if A† = V Σ̃−1UT , where
Σ̃−1 is the matrix of the same structure as ΣT consisting of the nonzero singular values of A
inverted.

Regularization ideas:

• Pivoted QR and factor selection

• Tikhonov/ ridge regression

• Truncated SVD

• l1 and the lasso

• Regularization via iteration

Parameter choice:

• Morozov

• L-curve

• Cross-validation

Say we have A =
[
a1 a2 . . . an

]
and want to pick columns of A that give a well-conditioned

matrix (as linearly independent as possible). The idea for pivoted QR using Gram-Schmidt (it
would be better to use Householder transformations but this method is easier to explain) is:

1. Pick aj with largest norm and swap it with the first column

2. Compute ãj = (I− q1q
T
1)aj for each column

3. Pick ãj with largest remaining norm, swap with the first column under consideration, and
repeat

This computes a decomposition AΠ =QR for some permutation Π. Moroever, we have |rii| ≥
∣∣rjj∣∣

for i < j. From here, we can choose columns that have diagonals with magnitudes above some
tolerance. MATLAB utilizes this when solving nearly singular linear systems.

The lasso is of the form:
min
x∈Rn

‖Ax− b‖22 +λ‖x‖1

The regularization term encourages sparse solutions x. However, the loss is not smooth.

Tikhonov regularization (aka ridge regression) is of the form:

min
x∈Rn

‖Ax− b‖22 +λ2‖x‖22

Note that this is equivalent to the ordinary least squares problem

min
x∈Rn

∥∥∥∥∥∥
[
A
λI

]
x−

[
b
0

]∥∥∥∥∥∥
2

2

35

The normal equations are of the form

(ATA+λ2I)x=AT b

Denote the solution xλ =A†λb= (AA+λ2I)−1b. This estimator is not necessarily unbiased, but has
lower variance in general. Say we have an economy SVD A= UΣV T . Then we have

A†λ = (ATA+λ2I)−1AT

= V (Σ2 +λ2I)−1V TV ΣUT

= V Σ(Σ2 +λ2I)−1UT

= V Σ̃−1
λ UT

so the nonzeros of Σ̃−1
λ are σ−1

j = σj

σ2
j +λ2 .

For truncated SVD, let we instead take

σ−1
j =

σ−1
j , σj > τ

0, σj ≤ τ

for some tolerance τ . This means that we take a lower rank approximation to A, instead of blending
the singular values with a parameter λ.

Lecture 20 : 10/18

Kernel methods

One of the reasons we may solve a least-squares problem is to fit a model to data. We may want
to predict f(a1, . . . ,an) ≈

∑n
j=1ajxj , so we minimize ‖Ax− b‖22. However, we may want to fit a

nonlinear model.

Say we have data (x1,f(x1)),(x2,f(x2)), . . . ,(xm,f(xm)) where xi ∈Rn. The goal is to find a model
s(x) that approximates f(x). The simplest model is (using statistical language) s(x) = xT θ, in
which our problem is ‖Xβ−y‖.

An idea to extend this is to use a feature map ϕ : Rn → RN , where N � n. If m > N , then
min‖Φβ−y‖ is still a least-squares problem, where the ith row of Φ is ϕ(xi), Φij = (ϕ(xi))j . Then
our model is s(x) = ϕ(x)Tβ. In other terms, we have

s(x) = ϕ(x)TΦ†y
= ϕ(x)TG−1ΦT y G= ΦTΦ, Gij = ϕ(xi)Tϕ(xj)

=
(
ϕ(x)TG−1

)(
ΦT y

)
=
(
ϕ(x)TR−1

)(
R−TΦT y

)
G=RTR

Now, for m<N (we can think of N as infinite if our feature space is just some Hilbert space, in

36

which case we use other inner products instead of the Euclidean inner product)

s(x) = ϕ(x)TΦ(ΦTΦ)−1y

= ϕ(x)Tβ β = Φ(ΦTΦ)−1y

=
(
ϕ(x)TΦ

)
(ΦTΦ)−1y︸ ︷︷ ︸

c

=
(
ϕ(x)TΦ

)
(ΦTΦ)−1︸ ︷︷ ︸

d(x)T

y

Define a kernel function k(x,x′) = ϕ(x)Tϕ(x′). Now, note that

s(x) = (ϕ(x)TΦ)(ΦTΦ)−1y

= kxX(KXX)−1y

Where [KXY]ij = k(xi,yj). Note that this does not explicity use ϕ. This is called the kernel trick.

Note that Φ is of the shape

Φ =

ϕ(x1)T

...
ϕ(xm)T

We consider whether we can predict ϕ(x) well as a linear combination of ϕ(x1), . . . ,ϕ(xm). We
solve a problem of the form

min
∥∥∥ΦTd(x)−ϕ(x)

∥∥∥
Then f(x)≈ d(x)T y =

∑m
j=1 dj(x)f(xj) = s(x). Indeed, d(x) = (ΦT)†ϕ(x).

Also, we have

KXXc= y

s(x) = kxXc=
m∑
j=1

k(x,xj)cj

Often our kernel matrices have nice structural properties that can be taken advantage of here.

Consider the squared exponential kernel

k(x,y) = e−‖x−y‖
2/2σ2

Then we have that KXX is typically almost low rank, meaning the eigenvalues decay (of course,
KXX is positive definite, so it is actually full rank). Usually, we solve (KXX +η2I)c= y, for which
there are many different justifications. Say we have a low rank decomposition KXX ≈ ZZT . Then
the goal is to solve (ZZT +η2I)c= y.

We want something of the form z(x)Td rather than z(x)T (Zc). We observe that the equations for
d are of the form (after some manipulations) (note: missing a transpose somewhere)

min
d
‖Zd−y‖2 +η2‖d‖2

37

This is a regularized least-squares problem. This least-squares problem is n× k, which is much
nicer to solve.

Suppose we have (I+ZZT)c= y, and consider a QR factorization[
Q1
Q2

]
R=

[
Z
I

]

compute d=R−1QT1 y and the residual is c if we put in d, which here is of the form c=±(y−Zd).

Lecture 21: 10/21

The standard eigenvalue problem is

Ax= λx A ∈ Cn×n or Rn×n, λ ∈ C

For matrix decompositions, this is of the form

AV = V Λ Λ diagonal
or AV = V J J a Jordan matrix

Also, we have the Schur form

Real form: AQ=QT T quasi upper triangular, QTQ= I, Q, T ∈ Rn×n

Complex form: AU = UT T quasi upper triangular, U∗U = I, Q, T ∈ Cn×n

where a quasi upper triangular matrix has 1×1 or 2×2 diagonal block.

A subspace V ⊆ Cn is an invariant subspace for A ∈ Cn×n if AV ⊆ V. The complex Schur form
satisfies U:,1:k is an orthonormal basis for a k dimensional invariant subspace. This is because

AU:,1:k = U:,1:kT1:k,1:k

A general invariant subspace basis V ∈ Cn×k is of the form

AV = V L L ∈ Ck×k

Example 0.4. Consider a 2×2 matrix

A=
[
a b
c d

]

The characteristic polynomial is

p(z) = det(A−zI)
= (a−z)(d−z)− bc
= z2− (a+d)︸ ︷︷ ︸

tr(A)

z+ (ad− bc)︸ ︷︷ ︸
det(A)

There are several cases, depending on q = b2−4ac= tr(A)2−4det(A).

38

• q < 0 =⇒ 2 complex roots

• q > 0 =⇒ 2 real roots

• q = 0 =⇒ eigenvalue of algebraic multiplicity 2 Note that the space of matrices where this
holds has codimension 1. There are two subcases for this:

– Degenerate (geometric multiplicity 1)
– Full geometric multiplicity AV = V λI =⇒ A= λI

We can consider more general eigenvalue problems, like the generalized eigenvalue problem

Ax= λMx

where M is often taken symmetric positive definite.

Also, we can consider a nonlinear eigenvalue problem

T (λ)x= 0

where T : C→ Cn×n is analytic.

There are also more specialized eigenvalue problems, such as the symmetric or Hermitian eigenvalue
problems, in which A=AT or A=A∗, respectively.

Eigenvalue problems also differ based on their goals:

• All eigenvalues and eigenvectors (or the Schur form)

• A few eigenvalues and eigenvectors

• All eigenvalues, no eigenvectors

Reasons to solve eigenproblems

Eigenproblems can be used for myriad applications:

• Solving nonlinear equations

• Solving optimization problems (maybe approximately)

• Dynamics (linear, constant coefficient)

– of numerical methods
– of stochastic processes
– of physical systems

Example 0.5. Consider a nonlinear equation

f(x) = 0 f : R→ R fairly smooth x ∈ [a,b]

With a good initial guess, we can run a Newton iteration. Say we do not have a good initial
guess. Another method is to approximate f(x) ≈ p(x) where p(x) is polynomial. Say we have

39

p(x) = xn−
∑n−1
k=0 cn−k−1x

n−k−1. Then we can find the roots of polynomial with an eigenvalue
algorithm, since they are precisely the eigenvalues of the companion matrix

C =

cn−1 cn−2 . . . c1 c0
1

1
. . .

1 0

Indeed, if λ is a root of p, p(λ) = 0, then with v = (λn−1, . . . ,λ,1), we have Cv = vλ. MATLAB’s
roots computes the roots of a polynomial by running an eigenvalue algorithm on the companion
matrix.

Example 0.6. Now, consider the problem of graph partitioning. Say we have a graph G, with
labeled nodes xi ∈ {±1}. We want to partition the nodes and consier the quantity

∑
(i,j)∈E(xi−

xj)2 = 4 ·number of edges cut. The graph partitioning problem is

min 1
4x

TLx

s.t.
n∑
j=1

xj = 0

s.t. x ∈ {±1}n

meaning we want to minimize the number of edges cut with a partition of the nodes into two equal
size groups. This problem is NP-hard. We relax the problem to

min 1
4x

TLx

s.t.
n∑
j=1

xj = 0

s.t. ‖x‖2 = n

which is a quadratic problem with a quadratic constraint, and one additional constraint. This looks
like

min x
TLx

xTx
eTx= 0

Lecture 22: Perturbation Theory (10/23)

For X invertible, we say A is similar to X−1AX, or that A and X−1AX are related by a similarity
transform. We make use of the following theorem about the eigenvectors and eigenvalues of certain
transformed matrices

Theorem 1 (Spectral mapping theorem). If F : C→ C is analytic on the spectrum of A, Λ(A),
then f(A) has the same eigenvectors as A, and eigenvalues f(λ) for λ ∈ Λ(A).

This is clear in the case where F ∈C[x] is a polynomial. In fact, when A= V ΛV −1 is diagonalizable,

F (A) =
d∑
j=0

cjA
j = V F (Λ)V −1

40

For a general analytic F (z) =
∑∞
i=0 ciA

i, the mapping is given by taking limits and is

F (A) =
∞∑
j=0

cjA
j = V F (Λ)V −1

Observation 0.1.

• Eigenvalues are continuous function of matrix entries

• Eigenvectors are not continuous in general. However, they are continuous locally, away from
eigenvalues of higher multiplicity. For instance, consider

A=
[
1 0
0 1

]
+ ε

[
a b
c d

]

In this case, the eigenvectors are those of
[
a b
c d

]
, and can be chosen arbitrarily by varying

a,b,c,d, which does not vary the matrix entries much due to the ε scaling.

Example 0.7. Consider the matrix

A(ε) =
[
λ 1
ε λ

]
The characteristic polynomial is p(z) = z2−2λz+(λ2−ε). The eigenvalues are thus given by λ±

√
ε.

In general, matrices close to Jordan blocks have

For an isolated eigenvalue (i.e. one of multiplicity 1), we have differentiability. Say we have λ an
eigenvalue with right eigenvector v and left eigenvector w

Av = vλ

w∗A= λw∗

Then we differentiate

δAv+Aδv = δvλ+vδλ

(A−λI)δv+ (δA− δλI)v = 0
w∗(A−λI)δv+w∗(δA− δλI)v = 0

w∗(δA− δλI)v = 0

δλ= w∗δAv

w∗v

We bound the norm

|δλ| ≤ ‖w
∗‖‖δA‖‖v‖
|w∗v|

=
∣∣sec(θ(w,v))

∣∣‖δA‖
Thus, we can expect |δλ| to blow up when w and v are nearly orthogonal. To sanity check this,

note that for a Jordan block J =
[
λ 1
0 1

]
, we have that Je1 = λe1 and eT2 J = λeT2 . Thus, in this

case, the left and right eigenvectors are orthogonal, so the bound does blow up.

41

Gershgorin

Recall that any diagonally dominant A is invertible. If A−λI is diagonally dominant, then λ /∈Λ(A).
Thus, λ ∈ Λ(A) implies that A−λI is not diagonally dominant, meaning there exists some i such
that |aii−λ| ≤

∑
j 6=i
∣∣aij∣∣. This implies that there exists some i such that λ ∈ Bρi(aii), where

ρi =
∑
j 6=i
∣∣aij∣∣.

Theorem 2 (Gershgorin’s Circle Theorem). Define the Gershgorin disks G1, . . . ,Gn by

Gi =
{
z ∈ C : |aii−z| ≤

∑
j 6=i

∣∣aij∣∣}
Then

• Λ(A)⊆
⋃n
i=0Gi

• If K is a connected component consisting of k disks, then exactly k eigenvalues are inside K.

Now, write A = D+F , where D is the diagonal and F is the off-diagonal. Consider the curve
D+sF . Then as s goes from 0 to 1, the Gershgorin discs grow from 0 radius to discs of radii given
by off-diagonal absolute row-sums of A. This is a nice illustration for how the eigenvalues change
as s varies.

—–

Suppose we have A = V ΛV −1 = V ΛW ∗, where W ∗ = V −1. Let Â = A+E. The eigenvalues of Â
lie in Gershgorin discs of

V −1ÂV =W ∗ÂV = Λ +W ∗EV

Thus, we can bound the difference in the eigenvalues of Â by looking at the row sums of this matrix.
A naive control on the eigenvalues of Â is given by ‖W ∗EV ‖∞ ≤ κ(V)‖E‖∞, so we know that

Λ(Â)⊆
n⋃
i=1

Bκ(V)‖E‖∞

(
λi(A)

)
A more refined analysis (as in the notes) gives a nicer bound

Λ(Â)⊆
n⋃
i=1

Bnsec(θi)‖E‖2

(
λi(A)

)
where θi is the acute angle between the left and right eigenvectors for λi.

Lecture 23: Power iterations (10/25)

Let A ∈ Cn×n, with eigenvalues labeled so that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. The eigen equations are
Axi = λixi. We also suppose that A= V ΛV −1 is diagonalizable.

A naive method of computing eigenvalues is to find roots of the characteristic polynomial det(A−
xI). This is not a good method for actually computing the eigenvalues. The solutions to a high
degree polynomial may change a lot with small perturbations to the coefficients.

42

Power method

We use that Ak = V ΛkV −1 or AkV = V Λk. Take x= V x̃. Then we have

Akx=AkV x̃

= V Λkx̃
=
∑
j

vjλ
k
j x̃j

= λk1
∑
j

vj
(λj
λ1

)k
x̃j

If we suppose that |λ1| is strictly greater than the magnitudes of the other eigenvalues, then the
only summand that is not killed is at j = 1. Thus, we consider the following power iteration

x(k+1) = Ax(k)∥∥∥Ax(k)
∥∥∥ = Akx(0)∥∥∥Akx(0)

∥∥∥
Then under our assumptions, the iterates converge to the dominant eigenvector. Note that the
convergence is linear, depending on the ratio λ2

λ1
. To obtain λ1, we then just apply Ax(n) ≈ λ1x1.

There are some issues with using this approach exactly:

1. We do not find λjvj for j 6= 1

2. What if |λ2|
|λ1| ≈ 1?

3. What if x̃1 = 0?
This is not too terrible of an issue, since for one a random choice of vector in Rn almost surely
has nonzero first component. Also, rounding issues on a computer could make the component
nonzero and accidentally resolve this.

Choose f(z) = 1
z−σ . Then we have (A−σI)−1 = f(A) = V (Λ−σI)−1V −1. Then the eigenvalues of

f(A) are 1
λj−σ . Thus, the maximal eigenvalue of f(A) is 1

λj−σ where λj is the eigenvalue closest in
σ. Again, convergence is linear. We now consider a way to speed up the convergence.

Say we have run some iterations of the power method, and have an iterate v̂ that is close to an
eigenvector of A. Then we have Av̂− λ̂v̂ ≈ 0. Applying v̂T on both sides of Av− λ̂v = 0, we get

v̂TAv− λ̂v̂T v = 0

so that
λ̂≈ v̂TAv̂

v̂T v

Thus, at each step of our shift and invert iteration, we choose our shift to be the Rayleigh quotient
(v̂TAv̂
v̂T v̂

), an approximation of the algorithm. With this Rayleigh quotient iteration, we now have
quadratic convergence.

43

Subspace iteration

We can in some sense extend the power method by applying A to a subspace. Vk =AkV0. Directly
applying A to a set of vectors V just makes all iterates converge to the dominant eigenvector, so
we have to make some adjustments.

Say we have an orthogonal set of p vectors Qk ∈Cn×n, and compute an economy QR decomposition

AQk =Qk+1Rk+1

q
(k+1)
1 r

(k+1)
1,1 =Aq

(k)
1

As long as
∣∣λp∣∣> ∣∣λp+1

∣∣, we have convergence of the iterates q(k)
j to eigenvectors.

Lecture 24: QR Method (10/28)

Consider the shift-invert iteration, and suppose σ is close to an eigenvalue. We have the iterate
v(k+1) ∝ (A−σI)−1v(k). Note that A−σI is ill-conditioned. However, it turns out that the error
in the solve mostly ”points in the direction of the eigenvector” so it is not terrible.

Now, we discuss subspace iteration more in depth. The iterates are

Vk+1 =AVk Qk+1Rk+1 =AQk

Consider the first column

qk+1
1 rk+1

11 =Aqk1

Thus, the first column of the Qk are following a power iteration. The first two columns of Q are
following a two dimensional subspace iteration, and so on.

Now, say we have iterates Qk+1Rk+1 =AQk, where this is the full QR factorization, so Q ∈ Rn×n.
If the eigenvalues have distinct magnitudes, then Qk→Q, the orthogonal factor in the Schur form
AQ=QT . Moreover, we have that Rk→ T .

There are some issues with this iteration:

• We want to focus on eigenvalues, not eigenvectors, so we want to focus on the triangular
factor T

• The cost per iteration is O(n3)

• It may converge slowly, depending on the difference of the magnitudes of the eigenvalues

We attempt to solve some of these problems. Our iteration is of the form (starting with Q0 = I)

Q1R1 =A

Q2R2 =AQ1

Q2R2R1 =AQ1R1 =A2

Q3R3 =AQ2

Q3R3R2R1 =AQ2R2R1 =A3

QkRk · · ·R1 =Ak

44

Note that this means at step k, we are implicity computing a QR factorization of Ak.

Q(k+1)R(k+1) =AQk

Q(k+1)R(k+1) · · ·R(1) =Ak+1

say we are trying to extract a good possible estimate of T . We select the estimate

A(k) = (Q(k))∗AQ(k)

A(k) = (Q(k))∗Q(k+1)R(k+1)

= Q̃(k+1)R(k+1)

A(k+1) = (Q(k+1))∗AQ(k+1)

= (Q̃(k))∗A(k)Q̃(k)

=R(k)Q̃(k)

Thus, our equivalent iteration is

A(k) = Q̃(k)R(k)

A(k+1) =R(k)Q̃(k)

Note that the steps are still O(n3). To resolve this, we transform A into a nicer matrix to work with,
by using similarity transforms so that the eigenvalues are preserved. In particular, we use unitary
similarities. Applying Householder transforms on both sides can bring A to upper Hessenberg
form (note that we cannot expect transformations that bring us directly to a Schur form, due to
Abel-Ruffini).

Considering the iteration on a Hessenberg matrix,

H(k) =Q(k+1)R(k+1)

H(k+1) =R(k+1)Q(k+1) is still Hessenberg!

Going through the steps of Householder QR on H(k), the Householder transforms are just Givens
rotations on the subdiagonal. Then, right multiplying R(k+1) by Q(k+1) just applies the Givens
rotations to the columns, which only affects the nonzero structure of the subdiagonal of R(k+1),
thus guaranteeing the upper Hessenberg structure of H(k+1). Note also that the Givens rotations
only take O(n2) time per iteration!

Lecture 25: Practical QR Method (10/30)

The first column of an upper triangular matrix is special since it only contains one nonzero. Like-
wise, the last row contains only one nonzero. Note that in the QR iteration, we have

Ak =Q(k)R̃(k)

A−k = (R̃(k))−1Q(k)T

eTnA
−k = (R̃k)−1

nn︸ ︷︷ ︸
a scalar

eTnQ
(k)T

45

Thus, the last column of the iterates Q(k) follow an inverse iteration. Recall that the first columns
follow a power iteration. This motivates the shifted QR iteration.

Q(k)R(k) =H(K)−σI
H(k+1) =R(k)Q(k) +σI

To check that this is an equivalent iteration, note that

H(k+1) =R(k)Q(k) +σI

=Q(k)T (H(k)−σI)Q(k) +σI

=Q(k)TH(k)Q(k)

This accelerates the convergence, if we choose good shifts. The simplest choice of shift is A(k)
nn , which

is equivalent to a Rayleigh quotient iteration in some sense. This is known as the Wilkinson shift.
During the iteration, the subdiagonal element of the last row approaches zero, so when it becomes
smaller than some tolerance, we can take the bottom right entry as an eigenvalue, then deflate and
continue the algorithm on the smaller submatrix.

Note that for a real A ∈ Rn×n, all elements in the iterates are real, and thus we can never truly
converge to an eigenvalue λ ∈ C\R. However, all complex eigenvalues of real matrices do come in
conjugate pairs. We can choose a complex shift to help resolve this.

To converge to an eigenvalue near σ, we iterate with (A−σI)−1. An iteration can converge to a
2 dimensional subspace associated with a conjugate pair λ,λ of maximum modulus. Consider the
mapping

z 7→ 1
(z−σ)(z−σ)

= 1
z2−2<(σ)z+|σ|2

Thus, we iterate with (A2−2<(σ)A+|σ|2 I)−1. This is known as the Francis double-shift strat-
egy. This can be done purely with real arithmetic.

Let U ∈ Rn×2 be an orthonormal basis for the eigenspace associated with a conjugate pair of
eigenvalues. Consider the matrix

UTAU =
[
α β
γ δ

]
We want to choose shifts as eigenvalues of UTAU . Note that we can just use the characteristic
polynomial z2− (α+β)z+ (αδ−βγ).

Note that our new iterating matrix uses A2. This is not still upper Hessenberg, but has just one
more subdiagonal of nonzeros. We have to use another trick to resolve this.

First, note that there are many Hessenberg matrices H orthogonally similar to a given matrix A.
The implicit Q theorem says that the orthogonal Q such that QTAQ=H is entirely determined
by its first column. This means that the first column can be taken arbitrarily (of unit norm), and
then the rest of the columns are determined.

The bulge chasing strategy applies transformation that eliminates starting from the left-most
column, which may introduce zeros in columns to the right, but which are iteratively eliminated in
later steps.

46

Lecture 26: Symmetric Eigenproblem Theory (11/1)

We first recall some useful facts for the homework. For x=A−1b,

δx=−A−1δAA−1b+A−1δb

=−A−1δAx+A−1δb

There is a standard mapping C→ R2×2 given by

a+βi= eiθ 7→
[
α −β
β α

]
= ρ

[
cosθ −sinθ
sinθ cosθ

]

Symmetric Eigenvalue Problem

The symmetric eigenvalue problem (SEP) is

A ∈ Rn×n, A=AT

Ax= xλ

The Hermitian eigenvalue problem (HEP) is defined similarly

A ∈ Cn×n, A=A∗

Ax= λx

There are some nice properties of the hermitian eigenvalue problem that do not hold in general:

• Eigenvalues are all real

• Complete basis of orthonormal eigenvectors

• All eigenvalues have maximal geometric multiplicity

The decomposition A= UΛU∗ is both a Jordan and Schur form. Note also that A= U(ΛS)(SU∗),
where S = diag(s(λ1), . . . ,s(λn)), where s(a) is the sign of a for a ∈ R.

Recall that the Rayleigh quotient for v 6= 0 is

ρ(A,v) = v∗Av

v∗v

Let us minimize or maximize a Rayleigh quotient. We differentiate

δ
(v∗Av
v∗v

)
= δ(v∗Av)(v∗v)− (v∗Av)δ(v∗v)

(v∗v)2

=
δv∗
(
2Av(v∗v)− (v∗Av)2v

)
(v∗v)2

= 2δv∗

‖v‖2
(
Av−ρ(A,v)v

)

47

Thus, stationary points of the Rayleigh quotient are points where Av = ρ(A,v)v, meaning points
where v is an eigenvector with corresponding eigenvalue ρ(A,v).

Thus, we consider the constrained optimization min/maxvTAv s.t.‖v‖2 = 1.

L(v,λ) = vTAv−λ(‖v‖2−1)
δL= 2δT (Av−λv)− δλ(‖v‖2−1)

Thus, the Lagrange multiplier is the eigenvalue.

Now, consider another constraint

min/maxvTAv s.t.‖v‖2M = 1

Then we can solve

L(v,λ) = 1
2v

TAv− λ2 (vTMv−1)

δL= δvT (Av−λMv)− δλ2 (vTMv−1)

Thus, we now have a (symmetric) generalized eigenvalue problem. If M = RTR, then vTMv =
vTRTRv =‖Rv‖2. Letting w =Rv, we have v =R−1w. Thus, this problem is equivalent to

min/maxwTR−TAR−1w s.t.‖w‖2 = 1

So we can convert a symmetric generalized eigenvalue problem to a standard symmetric eigenvalue
problem. We do not always do this in practice.

Now, note that if A= UΛU∗ is an eigendecomposition,

v∗Av = v∗UΛU∗v
= (U∗v)∗Λ(U∗v)︸ ︷︷ ︸

Ṽ

=
n∑
j=1

λj ṽ
2
j,j

Recall that similarity preserves eigenvalues. The natural set of transformations for quadratic forms
is congruence, which is of the form A 7→ X∗AX, X ∈ GLn. General congruence preserves the
inertia of A, meaning the respective counts of positive, zero, and negative eigenvalues.

Now, if A= UΣV ∗, then

A∗A= V Σ2V ∗

AA∗ = UΣ2U∗

Consider the matrix [
0 A
A∗ 0

][
u
v

]
=
[
Av
A∗u

]
= σ

[
u
v

]
For a singular value/ vector triple (σ,u,v). This shows that the SVD can be computed by way of
SEP.

Now, say we are using a shift-invert iteration on a symmetric matrix. Then we has as shift

ρ(A,v+ εu) = ρ(A,v) +O(ε2)

In the nonsymmetric case, the shift is O(ε) close. Thus, the symmetric structure significantly
benefits the convergence of the iteration.

48

Lecture 27: Symmetric Eigenproblem Theory Cont. (11/4)

Theorem 3 (Courant-Fisher Minimax Theorem). Let A=AT ∈ Rn×n with eigenvalues λ1 ≥ . . .≥
λn. Then

λk = max
V:dimV=k

min
v∈V\{0}

vTAv

vT v

= min
V:dimV=n−k+1

max
v∈V\{0}

vTAv

vT v

Sketch of proof. Let A=QΛQT . Then

ρ(A,v) = vTAv

vT v

= vTQΛQT v
vTQTQv

= ṽTΛṽ
ṽT ṽ

ṽ =Qv

= 1∑
j ṽ

2
j

(∑
k

λkṽ
2
k

)
=

n∑
k=1

λjwj
∑
j

wj = 1, wj ≥ 0

Thus, the Rayleigh quotient is a weighted average over the eigenvalues. We can change what the
weights are. Now, for λk, a maximal choice of subspace is one which is spanned by the first k
eigenvectors. The minimal Rayleigh quotient out of all vectors of this subspace is equal to the
smallest eigenvalue in this subspace, λk.

An application of Courant-Fisher is the Cauchy interlace theorem

Theorem 4. Let A be a symmetric matrix, with blocks

A=
[
A11 a12
a21 a22

]

Suppose λ1 ≥ . . .≥ λn are eigenvalues of A and λ̃1 ≥ . . .≥ λ̃n−1 are eigenvalues of A11. Then

λ1 ≥ λ̃1 ≥ λ2 ≥ λ̃2 ≥ . . .≥ λn−1 ≥ λ̃n−1 ≥ λn

Sketch of proof.

λk = max
dimV=k

min
v∈V6={0}

ρ(A,v)

λ̃k = max
dimV=k
vn=0

min
v∈V6={0}

ρ(A,v)

So λk ≥ λ̃k due to the extra constraint in the max of λ̃k. Use the other direction equality in
Courant-Fisher to get λ̃k ≥ λk+1.

49

Oftentimes roots of orthogonal polynomials can be characterized as eigenproblems for nested ma-
trices, so this theorem can be applied to show that there is interlacing of some sort.

Now, we consider perturbation results, which are much nicer than those applying to the general
eigenproblem. The Weyl bound is: ∣∣λk(A+E)−λk(A)

∣∣≤‖E‖2
This is because

ρ(A+E,v) = vTAv

vT v
+ vTEv

vT v

≤ vTAv

vT v
+
∣∣λ1(E)

∣∣
= vTAv

vT v
+‖E‖2

The Weilandt-Hoffman theorem states:∑
k

(
λk(A+E)−λk(A)

)2
≤‖E‖2F

Note that this measures the total difference between the eigenvalues of A+E and A while the Weyl
bound measures the eigenvalue by eigenvalue difference.

Now, say that we have an approximate eigenvalue v̂ with

Av̂ = v̂λ̂+ r

Then it holds that

(A+E)v̂ = v̂λ̂ E = rv̂∗+ v̂r∗

Meaning that there is a symmetric perturbation that scales in size with the size of the residual for
which we have an exact eigenvector to a perturbed problem.

Now, we present the Davis-Kahan sinθ theorem.

Theorem 5. Let AU = UΛ, where U ∈ Rn×k and Λ ∈ Rk×k. This means that U spans a k-
dimensional invariant subspace of A. Say also ÂÛ = Û Λ̂. Define a residual ÂU −UΛ. Then∥∥∥sinθ(U1, Û)

∥∥∥
F
≤ ‖R‖F

δ

where δ is the gap between Λ and the rest of the eigenvalues.

The sin and angle is defined in terms of a CS decomposition. Let Q =
[
Q1 Q2

]
orthogonal. We

50

want Q̃=
[
Q̃1 Q̃2

]
. We decompose

QT Q̃=
[
U1

U2

][
C −S
S C

][
V1

V2

]

C =

cosθ1

. . .
cosθk

S =

sinθ1

. . .
sinθk

This decomposes Q̃T1 Q2 = UΣV T , where σj = cosθj , called the jth canonical angle.

This theorem means that if A has a large gap in its eigenvalues, then regardless of any change in
the eigenvectors, the span of a eigenspace of the perturbed matrix is not much different from the
corresponding span of that of A.

Lecture 28: Symmetric Eigenproblem Algorithms (11/6)

First, suppose we reduce A = AT = QHQT where H is upper Hessenberg. Since A is symmetric,
this means that QHQT =A=AT =QHTQT , meaning that H =HT , so that H is in fact symmetric
tridiagonal. Thus, we denote H = T . Let α1, . . . ,αn be the diagonal elements, and β1, . . . ,βn−1 be
the subdiagonal elements.

Note that the QR algorithm preserves tridiagonality in the iterates by using orthogonal similarities.
Moreover, we can apply bulge-chasing to compute QR decompositions of a banded matrix, using
Given’s rotations. This costs O(n) time as opposed to O(n2) time per iteration in the nonsymmetric
case. Thus, the total cost per iteration of symmetric QR is O(n). Moreover, we can shift with the
Wilkinson shift (Rayleigh quotient iteration on last column) since all eigenvalues are real.

We consider the form of the Rayleigh quotient iteration in the symmetric case. Let vo bet the
initial guess, with error O(ε). Then

σ = ρ(A,vo)
= λ+O(ε2)

Thus, plugging in this shift, we get a new estimate

vp = (A−σI)−1vo

= vtruth +O(ε3)

Indeed, the Rayleigh quotient iteration converges insanely quickly in the symmetric case.

The total cost for symmetric QR algorithms is O(n) steps (due to this fast convergence), O(n) cost
per step, and thus O(n2) overall cost, once we have a tridiagonal matrix. However, tridiagonalizing
the matrix still takes O(n3) time.

Lastly, we note that the symmetric QR can be used to compute an SVD. The exact method is a
bit more complicated.

51

Jacobi iteration

A Jacobi rotation is like a Given’s rotation but applied to both sides of a matrix.

JTAJ = Λ all in R2×2

J =
[
c −s
s c

]
The Jacobi iteration is of the form:

• Pass through all off diagonals and apply Jacobi rotation to
[
Akk Akl
Alk All

]

– O(1) to compute J and O(n) to apply across all of A

When a Jacobi rotation is applied, previous off diagonals may be reintroduced, but they will be of
lower magnitude. This is much easier to parallelize than the QR algorithm.

Divide and conquer

Consider the tridiagonal eigenproblem. Say we only want some subset of the eigenvalues. If we
have a good estimate σ ≈ λ1, then Rayleigh quotient iteration converges cubically with O(n) cost
per iteration. The key idea is the linear solve with A−σI. If this were spd, then we could use
Cholesky. If not, then we can compute an LDLT factorization.

P (A−σI)−1P T = LDLT

Note that A−σI and D are congruent. Thus, they have the same inertia, meaning that the number
of positive, zero, or negative dii are preserved. Thus, we have the number of eigenvalues of A that
are > σ, number that are = σ, and number that are < σ.

Thus, the bisection idea is to get sufficient information to get a set of intervals containing eigenval-
ues. Once the intervals are small enough, we have good eigenvalue estimates, and can run Rayleigh
quotient iterations to converge more closely. Moreover, we can use the interlacing theorem to get
further information in some way.

The so-called Grail code has optimal complexity for computing eigenvectors once given the eigen-
values. To compute k eigenvectors, which contain O(nk) data, it takes O(nk) time.

Lecture 29: (11/8)

We review the connection between the second derivative test for Lagrange multipliers and the
symmetric eigenvalue problem. Consider an optimization problem with equality constraints,

minϕ(x) s.t. g(x) = 0

in which ϕ : R→R and g : Rn→ Rk, k < n. We form

L(x,λ) = ϕ(x) +λT g(x)

52

Then differentiating with respect to x,

δL= [ϕ′(x) +λT g′(x)]δx+ δλT g(x)

At a constrained stationary point where δL(x∗,λ∗) = 0, we look at directions consistent with g(x) =
0.

g(x+ εv) =O(ε2)
i.e. g′(x∗)︸ ︷︷ ︸

∈ Rk×n

v = 0

Then for a constrained minimum, we need

vTL′′(x∗)v >= 0, v 6= 0
s.t. g′(x∗)v = 0

For example, consider the problem

ϕ(x) = xTAx

g(x) = xTx−1

Then we compute

L(x,µ) = xTAx−µ(xTx−1)
δL= 2δxT (Ax−µx)− δµT (xTx−1)

Our second derivative test is
vT (A−µI)v > 0 s.t. xT v = 0

Sylvester’s equation

Now, moving on, consider Sylvester’s equation

AX+XB = C

A ∈ Rn×n, X ∈ Rn×k, B ∈ Rk×k, C ∈ Rn×k

We can rewrite this as a linear system using Kronecker products and vec, which takes a matrix and
lays it out in stacking columns vertically. Note that

vec(AX) = vec(
[
Ax1, . . . ,Axn

]
)

=

Ax1

...
Axn

=

A

. . .
A

x1
...
xn

= (I⊗A)vec(X)

53

thus, Sylvester’s equation is
(I⊗A+BT ⊗ I)vec(X) = vec(C)

Of course, this is a massive system takes O((nk)3) time to solve

We find that a discretization for computing Laplacians also takes this form

∇2f(x,y)≈ f(x+h,y)−2f(x,y) +f(x−h,y)
2h2 + f(x,y+h)−2f(x,y) +f(x,y−h)

2h2

say we have a grid of function evaluations, where Uij = u(xi,yi). Then we have the approximation

(∇2u)ij ≈
−1
h2 (I⊗T +T ⊗ I)vec(U)

T =

2 −1
−1 2 −1

.
−1 2 −1

−1 2

Now, note that if A = diag(α1, . . . ,αn) and B = diag(β1, . . . ,βn), then the solution to Sylvester’s
equation is Xij = cij

αi+βj
. Thus, we would like to reduce matrices to diagonal form. Say that A and

B are symmetric and we have eigendecompositions A = QAΛAQTA and B = QBΛBQTB. Then our
equation is

QAΛAQTAX+XQBΛBQTB = C

ΛAQTAXQB +QTAXQBΛB =QTACQB

ΛAX̃+ X̃ΛB = C̃

then the time to solve Sylvester’s equation is simply the cost of the eigendecompositions O(n3),
where we assume n≥ k.

If A or B are not symmetric, we can use a similar method with the Schur forms A= UATAU
∗
A and

B = UBTBU
∗
B. Then Sylvester’s equation is

TAX̃+ X̃TB = C̃

Note that TA and TB are triangular, not diagonal. The Bartels-Stewart algorithm can solve this
system. We look at each column one by one

First column: TAx̃1 + x̃1(TB)11 = C̃1

(TA+ (TB)11)x̃1 = C̃1

Note that this is a triangular system, so we can solve it in O(n2) time. The other columns are
similar, so this takes O(n3) time total.

Riccati equations

Sylvester’s equation is a linear equation of matrices. Riccati’s is a quadratic matrix equation

ATX+XA−XBR−1BTX+Q= 0

54

This is equivalent to

[
I XT

][Q A
AT −BR−1B

][
I
X

]
= 0[

Q A
AT −BR−1B

][
I
X

]
=
[
X
−I

]

=
[

0 I
−I 0

][
I
X

]
[
A −BR−1BT

−Q −AT

]
︸ ︷︷ ︸

Z

[
I
X

]
= 0

So
[
I
X

]
is a null space basis.

Lecture 30: Iterative Methods and Model Problems (11/13)

(Monday was Veteran’s day).

We are moving on to iterative methods for linear systems and iterative methods for eigenproblems.
Here, sparsity (meaning data sparsity) is very important. The actual nonzero structure of the
matrices are important; the methods generally do not work well with general sparse matrices.
Thus, we consider performance on model problems. One important model problem that we will
consider is the second-order finite difference discretization of Poisson’s equation. This takes the
form

−d
2u

dx2 = f on (0,1), u(0) = u(1) = 0

we take a mesh x0, . . . ,xN where xj = jh so that the steps are h = 1/N . We wish to approximate
uj ≈ u(xj). Denote fj = f(xj). Taylor expansion gives

u(x+h) = u(x) +u′(x)h+ 1
2u
′′(x)h2 + 1

6u
′′′(x)h3 +O(h4)

u(x−h) = u(x)−u′(x)h+ 1
2u
′′(x)h2− 1

6u
′′′(x)h3−O(h4)

u(x+h) +u(x−h) = 2u(x) +u′′(x)h2 +O(h4)

so that our approximation is

u′′(x) = u(x+h)−2u(x) +u(x−h)
h2 +O(h2)

so we have the equations

−u′′j ≈
−uj−1 + 2uj−uj+1

h2 = fj j = 1, . . . ,N −1

−uj−1 + 2uj−uj+1 = h2fj

55

which is the linear system

2 −1
−1 2 −1

.
−1 2 −1

−1 2

u1
u2
...

uN−2
uN−1

= h2

f1
f2
...

fN−2
fN−1

we denote a matrix of this tridiagonal structure of size N ×N by TN .

We consider an associated eigenproblem (T −λI)ψ = 0. The row-wise equation is

−ψj−1 + (2−λ)ψj−ψj+1 = 0

so we consider the characteristic equation

z2− (2−λ)z+ 1 = 0

we get two conjugate roots ξ, ξ with |ξ| = 1 when λ ∈ [0,4]. The solution is then of the form
ψj = αξj +βξ

j , which we can solve as α̂cos(jθ)+ β̂ sin(jθ) using the polar decomposition of ξ. We
can use the boundary conditions to get the exact eigensolutions.

eigenvectors zj(k) =
√

2
n+ 1 sin

(
(jπ)xk

)
eigenvalues λj = 2

(
1− cos

(πj

n+ 1
))

If we consider j� n, then Taylor expansion gives

cos
(jπ

n+ 1
)
≈ 1− 1

2
(jπ

n+ 1
)2

= 1− π
2

2 (jh)2 +O((jh)4)

so that we have

λj ≈ h2(πj)2

Now, we consider the 2D model problem, which is of the form

−∇2u=−(∂xxu+∂yyu) = f (x,y) ∈ (0,1)2

u(x,y) = 0 for |x|= 1 or |y|= 1

Then we want approximations
Uij ≈ u(xi,yj)

Discretizing gives a Sylvester equation

TU +UT = h2F

(T ⊗ I+ I⊗T)vec(U) = h2vec(F)

56

which is still a matrix equation of dimension N = n2. However, the 3D equation is not a matrix
equation:

(T ⊗ I⊗ I+ I⊗T ⊗ I+ I⊗ I⊗T)vec(U) = h2vec(F)

The nonzero pattern of TN×N , the matrix for the 2D equation, is block tridiagonal, with the diago-
nal blocks having tridiagonal structure and the sub/super-diagonal blocks have diagonal structure.

We have various direct methods to solve with TN×N :

• Dense Cholesky O(N3)
This is the slow, naive method.

• Banded Cholesky O(N2.5)

• Nested dissection O(N1.5)
This is a pretty good method, and can make good use of caches.
The above methods all use the nonzero structure.

• Sylvester solver O(N1.5) factorization and O(N) solves.
This makes use of the Kronecker product structure.

• Discrete sine transforms O(N logN)

There are also iterative methods (listed are amount of work to decrease error by a constant factor)

• Jacobi O(N2)

• Gauss-Seidel O(N2)

• Conjugate Gradients O(N3/2)

• SOR O(N3/2)

• SSOR with Chebyshev acceleration O(N5/4)

• Multigrid O(N)

Lecture 31: Iterative Methods (11/15)

Our goal is to solve Ax= b by iteration, in which we produce x0,x1, . . . that converge to x∗ =A−1b.
Today we will be consider stationary methods / fixed point iterations. For these, we have a function
F so that x∗ = F (x∗). Then we consider an iteration xk+1 = F (xk). We analyze this by considering

xk+1−x∗ := ek+1 = F (x∗+ek)−F (x∗)

We desire contractivity, meaning

‖ek+1‖ ≤ α‖ek‖

for some α ∈ (0,1).

57

For a matrix A, we take a splitting A=M −K, in which M is easy for solves. Then we have

Ax= b

(M −K)x= b

Mx=Kx+ b

x=M−1(Kx+ b)

Then we have

• Truth: Mx∗ =Kx∗+ b

• Iteration: Mxk+1 =Kxk + b

Taking differences, the error iteration is

Mek+1 =Kek

ek+1 = (M−1K)︸ ︷︷ ︸
R

ek

Thus, ρ(R) < 1 is necessary and sufficient for convergence. Since ρ(R) is bounded from above by
‖R‖ for any operator norm, a sufficient condition is that ‖R‖ < 1. Suppose we do have a bound
‖R‖ ≤ ρ < 1. Then we have ∥∥∥ek+1

∥∥∥=
∥∥∥Rek∥∥∥
≤ ρ

∥∥∥ek∥∥∥
≤ ρk

∥∥∥e0
∥∥∥

Thus, to reduce the error by a constant factor C < 1,∥∥∥ek∥∥∥∥∥e0
∥∥ ≤ ρk <C

k logρ≤ log(C)

k ≥ log(C)
log(ρ)

Now, we consider specific splittings. Consider a splitting A=D−L−U , where D is diagonal, −U
is upper trianglar, and −L is lower triangular. Then we have three classic iterations

• Richardson: M = αI

• Jacobi: M =D

• Gauss-Seidel: M =D−L

For the Richardson iteration, the fixed point equation is

αIx= (αI−A)x+ b

x= (I−ωA)︸ ︷︷ ︸
R

x+ωb ω = 1
α

58

In the SPD case, say we have 0< λ1 ≤ . . .≤ λn. For convergence, it is necessary that

1−ωλn(A)>−1
2−ωλn(A)> 0

ω <
2

λn(A)

The optimal ω has

1−η = 1−ωλ1(A)
−1 +η = 1−ωλn(A)

=⇒ ω∗ = 2
λ1(A) +λn(A)

Because we have that

ρ(1−w∗A) = 1−ω∗λ1−
∣∣2−w∗λn∣∣

1− 2λ1
λ1 +λn

= λ1 +λn
λ1 +λn

− 2λ1
λ1 +λn

= λn−λ1
λn+λ1

= κ(A)−1
κ(A) + 1

Recall that for our model problem, a row of our equation TN×Nu= h2f is

−ui−1,j−ui+1,j−ui,j−1−ui,j+1 + 4ui,j = h2fij

Note that the Jacobi and Richardson iterations are essentially the same, since the diagonal of TN×N
is the constant 4. The Jacobi iteration updates by assuming that the neighbors in the previous
step are exactly correct

u
(k+1)
ij = 1

4(u(k)
i−1,j +u

(k)
i+1,j +u

(k)
i,j−1 +u

(k)
i,j+1 +h2fij)

Gauss-Seidel updates by assuming that the most recently updated neighbors are correct

u
(k+1)
ij = 1

4(u(most recent)
i−1,j + . . .+h2fij)

We end with consideration of convergence rates. For Jacobi we have

xk+1 =D−1((L+U)xk + b)
R=D−1(L+U)

Note that ‖R‖∞ < 1 if and only if A is strictly diagonally dominant. This is because each row
sum of R is the sum of the off diagonals of that row divided by the diagonal element. Thus, strict
diagonal dominance of A is sufficient for convergence of Jacobi.

Note that our model problem TN×Nu= h2f is equivalent to

min 1
2u

TTN×Nu−h2uT f︸ ︷︷ ︸
ϕ

59

This is because this optimization problem has a convex objective, so it achieves its minimum at
the only stationary point, which occurs exactly when TN×Nu= h2f as seen by differentiating.

Thus, we can also consider solving the model problem with optimization strategies. For instance,
we can consider coordinate descent on ϕ : Rm→ R. This takes the form of iterating

ûj = argminz ϕ(u−ejuj +zej)

It can be shown that Gauss-Seidel has the exact same steps as this. This is enough to show that
Gauss-Seidel does not blow up. Not too many more arguments give convergence as well.

Lecture 32: Approximation from subspaces (11/18)

(Missed this lecture)

In estimating a solution to the linear system Ax = b by an approximate solution x̂ in a subspace
V, there are several possible approaches:

• Least squares: Solve minx̂∈V‖Ax̂− b‖2M for some M .

• Optimization: If A is spd, solve minx̂∈V φ(x) = 1
2x

TAx−xT b over

• Galerkin: Choose Ax̂− b⊥W for a test space W. For Bubnov-Galerkin methods, W = V. If
the test space is different than the approximation space, then the method is a Petrov-Galerkin
method.

Lecture 33: Krylov subspaces (11/20)

We look at our iterative methods

Mxk+1 =Kxk + b

Mxk =Kxk−1 + b

Mdk+1 =Kdk, dk = xk−xk−1

dk+1 =M−1K︸ ︷︷ ︸
R

dk

Note that we have

xk = x0 +d1 + . . .+dk

= x0 +d1 +Rd1 + . . .+Rkd1

= x0 +
k∑
k=0

Rjd1

= x0 + (I−Rj+1)(I−R)−1d1

Note that this is a power iteration. If R= V ΛV −1, then

dk =Rkd1

d̃k = Λkd̃1

60

If A= V ΛV −1 is diagonalizable, then A−1 = V Λ−1V −1. If we find an interpolating polynomial p(z)
such that p(λj) = 1

λj
, then p(A) = A−1. Thus, instead of using the basic polynomial

∑k
j=0Rj in

our iteration, we can consider using different polynomials that may allow quicker convergence.

Consider the iteration xk+1 =Rxk + b, where R is spd with ρ(R)< 1. Then we have

x(1) =Rx0 + b

x(2) =R2x0 +Rb+ b

x(3) =R3x0 +R2b+Rb+ b

if we set x(0) = 0, then

x(k) =
k−1∑
j=0

Rjb
k−→ (I−R)−1b

Now, suppose we have more information, that the spectrum is contained in an interval σ(R)⊆ [α,β],
0< α < β < 1. We wish to find a polynomial p(z) so that p(A)b≈A−1b, meaning

Ap(a)b− b= [Ap(A)− I]b is small

We call q(z) = 1− zp(z), the negation of the polynomial that appears. Note q(0) = 1, and we
want q(λj) as small as possible. We can apply the equioscillation theorem, and will later discuss
Chebyshev polynomial methods that work for us.

We define the kth Krylov subspace

Kk(A,b) = span(b,Ab, . . . ,Ak−1b)
= {p(A)b : p ∈ Ck−1[x]}

The key ideas going forward are:

• Use Krylov subspaces as approximation spaces

• Use Galerkin/optimization to choose good solutions from the spaces

The best possible residual involves minimizing q(z) on the spectrum, note that

q(z) = det(zI−A)
det(−A) gives 0 residual

Now, we go back to the spd case, and ask what can we say if we only know the eigenvalues are
contained in [α,β].

We will make use of the Chebyshev polynomials, defined as

T0(x) = 1
T1(x) = x

Tk+1(x) = 2xTk(x)−Tk−1(x)

This is a constant coefficient recurrence, we have

Tk(x) = αξk1 +βξk2

61

where ξ1, ξ2 are the roots of z2− 2xz+ 1. For x between [−1,1], Tk(x) oscillates and is given by
Tk(x) = cos(karccos(x)). Outside of [−1,1], we have Tk(x) = cosh(k cosh−1(x)), which blows up
quickly. We have a bound

Tm(1 + ε)≥ 1
2(1 +m

√
2ε)

This is connected to the condition number. On [α,β], we have

|qm| ≤
2

1 +m
√

2ε
ε= 2(κ(A)−1)−1

|qm| ≤ 2
(
1− 2m√

κ(A)−1

)
+O

(m2

κ(A)−1
)

If the spectrum is not uniformly spread about [α,β], then we would want unequal oscillations about
the interval.

Lecture 34: Krylov subspaces (11/22)

We consider the Kk(A,b) = span(b,Ab, . . . ,Ak−1b) = {p(A)b | p ∈ Ck−1[x]}. Observe that

• If p(z) is the minimal polynomial of A, p(z) =
∏
j(z−λj), so p(A) = 0, and is of minimal

degree, then Kdegp(A,b) is the same as the Krylov subspace for any higher degree. In general,
if q is a polynomial such that q(A)b = 0, then we can use Krylov subspaces of degree up to
degp.

Thus, if we can find a polynomial such that q(A) kills b, we can bound the largest Krylov subspace
we need consider.

Today, we will consider orthonormal bases for Krylov subspaces and projections of A onto these
bases.

Let us take a generic A ∈Rn×n. We want an orthonormal basis with span{q0, . . . , qk−1}=Kk(A,b).
Our process is

q0 = b

‖b‖
q̃1 =Aq0− q0(qT0 Aq0)

q1 = q̃1
‖q̃1‖

...
...

q̃j+1 =Aqj−
j∑
i=0

qi(qTi Aqj)

qj+1 = q̃j+1∥∥q̃j+1
∥∥

62

We write this as

q̃j+1 =Aqj−
j∑
i=0

hij

qj+1 = q̃j+1
hj+1,j

so we have

hj+1,jqj+1 +
j∑
i=0

qihij =Aqj

j+1∑
i=0

qihij =Aqj

Writing this in matrix form,

A
[
q0 q1 . . .

]
=
[
q0 q1 . . .

]

h00 h01 h02 . . .
h10 h11 h12 . . .

h21 h22 . . .
. . .

When we have computed the full Krylov subspace, then we have an incrementally computed
Hessenberg decomposition AQ = QH. The iterates in between are the Arnoldi decompositions
AQ(k) =Q(k+1)H

(k), where

Q(k) =
[
q0 . . . qk

]
and H ∈ R(k+1)×k is upper Hessenberg with an extra row. This iteration is the Arnoldi algorithm.

The classical Gram-Schmidt orthogonalization step is

w =Aqj

q̃j+1 = w−
j∑
i=0

qi(qTi w)

on the other hand, modified Gram-Schmidt uses that (I −
∑j
i=0 qiq

T
i) =

∏j
i=0(I − qiqTi) due to

orthogonality, so the iteration is

• w←Aqj

• For i= 0, . . . , j
w ≥ w− qi(qTi w)

If A is symmetric, then the iteration computes

AQ(k) =Q(k+1)T =Q(k)T (k) +βk+1qk+1e
T
k

where β1, . . . ,βn−1 are the subdiagonal entries of T . This is known as the Lanczos iteration .

63

Now we expand to try to make an iteration. Reading off one column of the equation is

(AQ)k =Aqj

= (QT)j
= βj−1qj−1 +αjqj +βjqj+1

βjqj+1 = (A−αjI)qj−βj−1qj−1

Conjugate Gradients

Let A by symmetric. Consider the problem

min 1
2x

TAx−xT b

over a Krylov space.

AQ(k) =Q(k)T (k) +βkqk+1e
T
k

x̂=AQ(k)y

Q(k)TAQ(k)y = T (k)y

solve T (k)y =Q(k)T b

x̂=Q(k)y

If we have A generally nonsymmetric, and we want to solve

min‖Ax− b‖

over x̂=Q(k)y, then

min
∥∥∥∥H(k)

y−Q(k+1)b

∥∥∥∥= min
∥∥∥∥H(k)

y−‖b‖e1

∥∥∥∥
gives the GMRES method.

Lecture 35: Conjugate Gradients (11/25)

Let A be spd. We will form a Krylov subspace K and minimize the objective

min
K
ϕ(x) = 1

2x
TAx−xT b

over the Krylov subspace. First we will look at some properties of this problem

ϕ̃(x) := 1
2‖r‖

2
A−1

= 1
2
(
(Ax− b)TA−1(Ax− b)

)
= 1

2
(
xTAx−2xT b+ bTA−1bA−1(Ax− b)

)
= φ(x) + 1

2‖b‖
2
A−1

64

since the second summand does not depend on x, minimizing ϕ̃ is equivalent to minimizing ϕ.

There is another way to think about this

e(x) = x−x∗

r(x) =Ax− b
=Ax−Ax∗

=Ae

Thus, at the solution, the error e is orthogonal to the residual r.

Now, consider

ϕ̂(x) = 1
2‖e‖

2
A

= 1
2
∥∥x−x∗∥∥2

A

= 1
2(x−x∗)TA(x−x∗)

= 1
2x

TAx−xT∗Ax+ 1
2x

T
∗Ax∗

= 1
2x

TAx−xT b+‖x∗‖2A
= ϕ̃(x)

So we have three perspectives for looking at the method of conjugate gradients. Now, recall the
Lanczos iteration

Q(k)TAQ(k) = T (k)

Consider Bubnov-Galerkin with x(k) =Q(k)y(k). The problem is of the form

min
y(k)

ϕ(Q(k)y(k))

Note that

Q(k)b=‖b‖e1 = (‖b‖ ,0, . . . ,0)

Note the problems T (k)y(k) are nested linear systems. This is because T (k+1)y(k+1 is of the formT (k)

βk
βk αk+1

y(k+1)

1
y

(k+1)
2

We use LU decompositions of the iterates T (k+1) = L(k+1)U (k+1).

[
L(k) 0

0 l̃ 1

]U (k+1) 0
ũ

0 S

65

Then our intermediate iterates are

y(k) =Q(k)[T (k)]−1‖b‖e)1

=‖b‖
(
Q(k)[U (k)]−1︸ ︷︷ ︸

V (k)

[L(k)]−1e1︸ ︷︷ ︸
z(k)

)

L=

1
l1 1

l2 1
.

U =

u11 u12

u22 u23
u33 u34

.

Where z(k) can be computed simply

Lz =‖b‖e1

z1 =‖b‖
l1z1−z2 = 0 =⇒ z2 =−l1z1

zk+1 =−lkzk

and V (k) can also be computed

v1u11 = q1 =⇒ v1 = q1/u11

v1u12 +v2u22 = q2 =⇒ v2 = (q2−v1u12)/u22

This means that the iterates can be simply updated

x(k+1) = V (k+1)z(k+1) = x(k) +vk+1zk+1

Lecture 36: CG and Beyond (12/4)

We continue with conjugate gradients. Consider ϕ(x) = 1
2x

TAx−xT b. Also, we consider an opti-
mization framework

x(k+1) = x(k) +αkp
(k)

where p(k) should be a descent direction, so p(k)T∇ϕ < 0, but not too close to zero. Here, we
have ∇ϕ= Ax− b, which happens to be the residual. One way to choose a descent direction is by
gradient descent, with p(k) =−∇ϕ. This is of the form

x(k+1) = x(k) +αk(b−Ax(k))

For αk = α fixed, this is the Richardson iteration. This does not work well if A is ill-conditioned.
There are methods to choose αk in a better way; we will consider changing pk. There are two ways:

66

1. Scaling/ preconditioning x(k+1) = x(k) +αkM
−1(b−Ax(k))

There are several preconditioning methods derived from stationary methods.

2. Look at previous steps. This is what conjugate gradients does.

Consider the iteration

x(k) = x(k−1) +αkpk−1

and choose pk−1 ∈ Kk(A,b) such that

pk−1 ⊥A Kk−1(A,b)
i.e. pTk−1Av = 0 ∀v ∈ Kk−1(A,b)

Then compute an optimal step length αk.

x(k) = x(k−1) +αkp
(k−1)

r(k) = r(k−1)−αkAp(k−1)

since r(k) ⊥ r(k−1), we can then solve

αk =
rTk−1rk−1

pTk−1Apk−1

Beyond CG

Sadly, not all matrices are symmetric positive definite. For a general problem, we have idea 0:

min
x

1
2‖Ax− b‖

2
2 = 1

2x
TATAx−xTAT b+‖b‖2

Thus, one possibility is CG on normal equations (CGNE). This is not used terribly often, since
ATA can be quite ill-conditioned. A more commonly used method, which we call idea 1, is within
MINRES (symmetric) and GMRES (nonsymmetric). GMRES starts from the form

AQ(k) =Q(k+1)H
(k)

And solves the problem is

min
y

∥∥∥∥∥∥∥∥AQ
(k)y︸ ︷︷ ︸
x(k)

−b

∥∥∥∥∥∥∥∥
≡min

y

∥∥∥∥H(k)−‖b‖e1

∥∥∥∥2

We solve this and form the iterate x(k). The issue is that we have to save the Krylov basis. Thus,
in practice, GMRES(k) is often used:

• While not converged

67

– r = b−Ax̂
– Approximate A∆x= r with (up to) k steps of GMRES
– x̂← x̂+ ∆x

Typically, k is chosen to be 10-20, but convergence can be weird. Indeed, it is hard to reason about
this algorithm. Of course, it is often preconditioned, so that we solve M−1Ax=M−1b.

Lecture 37: Krylov methods for eigenproblems (12/6)

We will discuss solving eigenproblems with Krylov subspaces:

• Variational/ Galerkin approach to eigenproblems

• What does the Krylov subspace contain (in practice)?

• Spectral transformations and filtering

Today we will focus on symmetric eigenproblems, so A=AT . Recall that for the Rayleigh quotient
ρA(v) = vTAv

vT v
, the nonzero stationary points of ρA are eigenvectors, meaning that δρA(v) = 0 =⇒

Av = ρA(v)v.

The goal is to approximate eigenpairs from a subspace V. We are looking for v = V y where V is a
(orthonormal) basis for V. Consider the Rayleigh quotient

ρA(V y) = yTV TAV y

yTV TV y

= yTV TAV y

yT y

= ρV TAV (y)

We will find stationary points of the Rayleigh quotient over some subspace. This general method
is called a Rayleigh-Ritz procedure. The approximations (θ,u)≈ (λ,x) are called Ritz pairs,
where V TAV y = θy, u= V y.

Recall that if u= v+e, where v is an actual eigenvector, then θ = λ+O(‖e‖2). This comes directly
from the Rayleigh quotient.

A good choice of subspace to search over is a Krylov subspace Kk(A,b) for some random vector b.
Note that Kk(A,b) = span(b,Ab, . . . ,Ak−1b). These are power iterates, so we expect good estimates
for the eigenpair with maximal magnitude eigenvalue. Note that the Krylov subpaces are shift
invariant, meaning that Kk(A,b) = Kk(A−σI,b) for σ ∈ R. Thus, we also expect good estimates
for the eigenpair with the minimal magnitude eigenvalue. For a polynomial p ∈ Rk−1[x],

bT p(A)TAp(A)b
bT p(A)T p(A)b = bTAp(A)2b

bT p(A)2p(A)b p(A) commutes with A

=
∑n
j=1 b̃

2
jλjp(λj)2∑n

j=1 b̃jp(λj)2

68

Thus, the approximation theory here is linked to polynomials (as in Krylov methods for linear
systems). This means that the spacing of the spectrum matters a lot in the approximation: clusters
of eigenvalues are hard to deal with, and the extremal eigenvalues are easier to approximate. Now,
let Q(k) be the orthonormal basis as in Lanczos,

Q(k)TAQ(k) = T (k)

It can be seen that interior eigenvalues are expensive to compute. They need lots of steps and
work from reothogonalization. One solution to this is implicit restarting, which essentially reduces
the size of the Krylov subspace on some steps while maintaining eigenvectors that have already
been converged to. This is the one used by eigs in ARPACK. Another approach is Krylov-Schur.
Yet another solution is explicit filtering/ spectral transformations. There are preconditioners for
eigenproblems, but they are complicated.

Spectral transformations

There are (simple) rational transformations and polynomial transformations. The simplest rational
transformation is of the form (A−σI)−1. For these methods, we need only a way to multiply by
this matrix, preferably with direct factorization. These converge first to the eigenvalues near σ.
The Cayley transform is of the form (A− σI)−1(A+ σI),σ ∈ R+. There is built-in support for
shift-invert and Cayley transforms in ARPACK. Polynomial methods have the advantage that they
do not require linear system solves. Spectrum slicing groups eigenvalues into slices, and solves with
polynomials that are focused on one group at a time.

69

