N O g s W =

N O g s W =

CS 6210: Matrix Computations

Derek Lim

Fall 2019

Instructor: David Bindel

Course Description: Stable and efficient algorithms for linear equations, least squares, and
eigenvalue problems. Direct and iterative methods are considered. Julia and/or MATLAB are
used extensively.

Textbooks: Golub and Van Loan, Matriz Computations and Demmel, Applied Numerical Linear
Algebra

Webpage: https://www.cs.cornell.edu/courses/cs6210/2019fa/index.html

Lecture 1: Introduction (8/30/19)

Consider the following two algorithms to compute a matrix-vector product.

function y = matvec_row(A, x)
y = zeros(m,1);
for i = 1:m
for j = 1:n
y(i) = y(i) + A(i,j)*x(j)

end
end
function y = matvec_col(A, x)
y = zeros(m,1);
for j = 1:n
for i = 1:m
y(i) = y(i) + A(i,j)*x(j)
end
end

These two algorithms for matrix-vector multiplication may take different durations of time. The
layout in Fortran, MATLAB, and Julia (column-major order) leads to the second algorithm, which
processes column by column, to be preferred. Memory basics:

e 1D ordering

e Cache architecture

https://www.cs.cornell.edu/courses/cs6210/2019fa/index.html

— Temporal: access small sets of data and do lots of work before moving on

— Spatial: access elements in order
Basic Linear Algebra Subroutines (BLAS)

e Level 1: O(n) work on O(n) data

— e.g. dot products, adding/ scaling vectors

— typically working with each element once, so temporal locality will not help much but
spatial does

e Level 2: O(n?) work on O(n?) data

— e.g. matrix-vector product

— again, does not really make good use of temporal locality
e Level 3: O(n?) work on O(n?) data
— e.g matrix multiplication

— makes use of temporal locality

When doing more complex operations, we will often break matrices into blocks to make use of Level
3 BLAS and temporal locality.

function C = naive_matrix_multiply (A, B)
[m,p] = size(A):
[p,n] = size(B);
C = zeros(m,n);
for i in 1:m
for j in 1:
for k in
c(i,j)
end
end
end

N~ B

P
C(i,j) + A(i,k)*B(k,j)

© 0 N O U R W N =

e
= o

Different permutations of the indices lead to different ways to view the operations:

(4,5)(k) — ¢i,j = A(i,:) - B(:,7) gives dot products of rows of A with columns of B

(k)(i,7) — C =3, A(:,k)B(k,:) is a sum of outer products of columns of A with rows of B
Instead of going elementwise, we can break the matrices into blocks.

Ci1 Ci2 A An Bi1 Bio
[021 0221 [Am Azz} le B22]

Then Cj; = Zi:l A. ;;By,.. Locality kicks in here and improves performance. The smaller blocks
could make use of the cache.

S I N

Lecture 2: Types of Matrices (9/4)

Problem du jour: Argue that the set of unit upper triangular n x n matrices forms a group with
operation given by the standard matrix product.

Each element of the group is invertible since each element has determinant 1. The product of two
unit uper triangular matrices is unit upper triangular. The identity is unit upper triangular. All
other properties follow from the properties of the matrix product.

In matrix computations/ numerical linear algebra, the choice of basis is an often important con-
sideration when studying linear maps. Some properties such as symmetry, skew symmetry, and
nonsingularity do not depend on the basis. Types of matrices that we will consider are

e General dense matrix

Diagonal (basis dependent)

Triangular (basis dependent)

— Strictly triangular means 0 on the diagonal

Permutation matrix: P € {0,1}"*", one 1 per row,/ column

Tridiagonal matrix: b;; =0 for i —j| > 1

Banded matrix: b;; =0 for | — j| > § where /5 is the bandwith

— Can also have a lower and upper bandwith

Hessenberg

Consider the problem of computing a matrix vector product y = Dx where D is diagonal.

D = diag(d);
y = Dxx; J 0(n"2) time and space

/% instead, for O0(n) time and no additional space,
y =d .* x;

A general sparse matrix has "most” entries as zero, so we store only the nonzeros explicitly (we
are leaving the term "most” up for interpretation). For instance, for the matrix

SO O =
O = N O
= w o O
- o O O

we could store it in the usual MATLAB/ Julia/ Python/ FORTRAN column major order:
1000 0210 0031 0014

Compressed sparse column (CSC) format is like the column major format, except we store only
the nonzero entries along with their row indices, and column pointers. Column pointer j stores the

gtk W N =

entry 112(1(13]11|4
row idx

)
w
W

column pointer | 1 | 2[4 |6 |7

index k such that nonzero entry k (in top to bottom, left to right order) is the topmost nonzero
entry in column j.

A data sparse matrix is one that requires far fewer than n? parameters to describe it. Examples
include:

e Low rank matrices
— For instance, a rank 1 matrix A € C*™*" can be written A = uv” where u,v € C"

e Toeplitz matrices

— Of the form:
1 T2 3 n
C2 1 T2 Tn
Chb Ch—1 Cp—2 ... T

— These are not generally low rank
— There is an O(nlogn) multiply by FFTs

An example of making use of the data sparsity of low rank matrices can again be found in matrix-
vector multiplication:

A = uxv’;
y = Axx; / Bad way to multiply, 0(n"2) time and space

4 Better O0(n) time method:
y = u*x(v’*x);

Consider the n x n matrices, which form an n? dimensional vector space. Also, consider the map
X +— AX, where A € C™™. This need not be an O(n?) operation because of the matrix structure
that we have.

For a matrix A, we define vec(A) as the vector formed by listing the elements of the matrix in
column major order.

The Kronecker product of two matrix A € C"™*™ and B € CP*? is defined as

aL1£3 e aLn£3
A®B = : : € Cmpxng

anu113 ce anhnl3

Lecture 3: Linear Algebra Review (9/6)

Problem du jour: How much does it cost to add two sparse matrices (in compressed sparse column
form)? What about adding O(n) sparse matrices, each with a constant number of nonzeros (nnz)?

O(nnz1 -nnza) because of reindexing.

Linear Algebra Review

We typically denote abstract vector spaces as V.U, W (generally over R or C). Some examples that
we will use include:

Rn’ cn

P4 = {polynomials in one variable of degree at most d}

L(V,W) = {linear maps V — W}

V* = {linear functions V — F'} = L(V, F') for the field F' associated with V

o C(92) = {continuous functions Q@ — R}
To illustrate the concept of bases, we take the example P;. An example of a basis is the power

basis, which is [1,z,22,...,2%. Another basis is given by the Chebyshev polynomials
[To(x),Ti(x),...,Ti(x)], which can be defined recursively as

Tji1(2) = 2Ty (x) — Ty (a)

The matrix A = [1 x xz] represents a map R3 — P,. For instance,
1
(12 2|2 =1+20+2?
1

Let V, W vector spaces, and A:V — W a linear map. Say By and Byy are bases for V and W,
respectively. A= B;\}ABV is the matrix representation of A with respect to these choices of bases.

A norm is a map [|-|| : V — R such that

] =alJv]| for a € C
o o] 20, 0] =0 = v=0

o [[v+w| <|lvf| +[w]

Examples in R":
o [[ull,= (Z}Ll\vj!p)l/p for p>=1
° ||v]|, = max;|vj|

Consider norms over Py

* [Pl L2p0,1) = f01|p(33)|2 dx
* [Pl 20,1 = fol p(z)| dz
° HpHLQ[O,l] = S‘lpa:e[o,u‘p(fﬂ)‘

An inner product (-,-) : V¥V xV — R (or C) has properties

every inner product has an associated norm ||v|| = \/(v,v).

Here are three (or four) possible meanings of a matrix. A can represent

e mapping from a space to itself

e mapping between two spaces

e mapping from two vectors to R (or C)
— bilinear form: (z,y) — y” Az
— sequilinear form: (x,y)— y*Ax

e mapping V — R that is pure quadratic

— a2l Ax

Lecture 4: Canonical Forms, Norms (9/9)

Problem du jour: Prove the Cauchy-Schwarz inequality |(x,y)| <||z|l5|lylly without making use of a
specific basis/ structure of R™.

Proof.

lz+ 13 < (l2lly +1lyll)?

<[lzll3+lyl3 + 20,1yl
lz+yll3 = (x+y,2+y)

= (z,2) +(y,y) +2(z,y)

=|=ll3 +llyl13 +2(z,y)
lz—yl3 =llzl3+lyl3 —2(z,y) likewise
2[(z,y)| < 2llzll5llylly

General choice of basis Orthonormal basis (bases)
Linear map L:V — W Rank/ nullity Singular value decomposition
Linear operator L:V —V Jordan form Schur form
Quadratic form L:V — C Sylvester intertia Symmetric eigendecomposition

Table 1: Canonical forms

These canonical forms have the following shapes:

e Rank/ nullity: [é 81, A=wW-1lAV
- ;
02
e Singular value decomposition: o o1>00>...20, X=UAV
0
L 0_
A1
I .
e Jordan form: , = B
A1
I, N
ti1 ti2 lin
e Schur form: T =
tn—l,n—l tn—l,n
tnn
I
e Sylvester inertia: 0
-1
A1
e Symmetric eigenproblem:
An

The rank/ nullity, Jordan form, and Sylvester inertia are discontinuous with respect to pertubations
to the linear operator. Thus, they are not typically useful to directly compute on a physical
computer, as numerical error and noise in data could change these forms significantly.

Norms

Now, consider a space of linear maps £(V,V). A norm ||-|| over this space is consistent if || AB|| <
IA[I[B]-

Example 0.1 (Frobenius norm).

2 2
A7 =" |ai,l
i
This is a consistent inner-product norm, induced by the inner-product.

(A,B) = Zzaijgij =tr(B"A)
i

The Frobenius norm is easy to compute, but may not always give us nice bounds.

Let V,W be normed vector spaces. Then the operator norm/ induced norm ||-[|,,, is

[Av]]
[Al =su W
w20 oy
this is a consistent norm.
Example 0.2.
A
o [|All} = sup, ”H;ﬂ'll = max; ;| ai;|
A
o 14| = sup, 2o e = max, 5y
A
o 1]l = sup, . 72 = o1
; : _ 1Az
To see this, consider ¢(x) = sup,_4 -
ll=ll5
(2) 2T AT Ax
T)=——"
4 2Tz
...calculus elided
TATA
ATA.CU = xTix
xlx

In this last derivation we use variational notation. &[f(X)] = % ls=0 f(X +50X) = %f(X).

As an example of the utility of variational notation, say we want to compute 6[A~!].

S[A7TA) =6[A" A+ A7 [§A] product rule
S[A7]=—-A"1[s4]A71

Lecture 5: (9/11)

Problem du jour: Suppose Q(s) satisfies QTQ =1 and is differentiable with respect to s. Show
d% (s) = QS for some S =—ST.

Proof.

dQ dQ
(55) @+q"(52) =0
d

@"(50)=-(30) @

d d T
T _ T(%
@ (£Q> B [Q (dsQﬂ
diQ = QS since @ is orthogonal
s
where S = QT(%Q) In variational notation, 6Q) = QS. =

Resuming from last time, we can use Lagrange multipliers to determine the form of the operator
2-norm.

T 2
14l = sup [lAz];

lzl3=1
L(z,\) =||Az|]* = A(|z]| - 1)
0| Az|?] = ol AT Ax]
=2627 AT Ax
Sflz)* —1] = 8[zTz 1]
=252Tx

6L = 2627 [AT Az — Nz + A(|z||* — 1)

Note that we end up with an eigenvalue problem AT Az = Az. Let A =UXV7' be an svd, then
ATA=V32VT. Since V is orthogonal, AT A has the same eigenvalues as ¥2. Thus, the solutions
correspond to the squared singular values. Hence, ||A||, = 01(A).

The 2-norm is useful because it has many useful properties, but it is more difficult to compute than
the 1-norm or co-norm.

Remark 1 (Orthogonal invariance). As an example of a useful identity, it holds that the euclidean

norm is orthogonally invariant, meaning that ||Qx||, =||z||,. This is because HQ:EH% =27Q"TQx =
T 2

ot x =z

For the Frobenius norm, it holds that
4] =l1QAIl = |[AQ"

The operator 2-norm is also orthogonally invariant.

for any @, Q" orthogonal of proper dimension

F

|QAUly = sup [|QAU,

llzll,=1

= sup ||[AUz||, orthogonal invariance of euclidean norm
llzll=1
= sup [[Az],

||ZH2:1

=4l

Thus, another way to derive the form of ||A]|, is to note that for an svd A=UXV7T,

HUEVTH2 =X, = suzp ojz; =01
=1

=

We can also compute the 2-norm of A~! painlessly. For A = UXV”, we have A~ = VXU,
Thus, H2:1/an.

Recall if [2| < 1, then > 32,27 =

1—zit1
1—z

02]

Analogously, Y52, A7 = (I —A)_ if p(A) < 1. A weaker condition is for || A|| < 1 for some consistent
norm ||-||.

|(A+B) = a7t =| (a7t = a7 BAT O B)?) - A7
=|atEA7 | +oUEl?)

Another way to do the same analysis is as follows:

(A+E) ' =AI+AE)™!
=(I+A'E)" At

4yt H_Hz atppat—a| ac] <o

Using that

| x| == < XX =4 ||X||

we have an expression for the sensitivity of an inverse to perturbations.

Error

A . A . . T
Say we want to compute x and get #. The absolute error is || — z||. The relative error is
These are forward error measures.

Backward error measures the error by comparing the computed solution to the exact solution of
a related problem. An example of backward error is an expression like (A+ E)# = b for some small
E.

Lecture 6: (9/13)
Problem du jour: Show y' Az = tr(Axzy™).

Proof. y' Az = tr(y” Az) = tr(Azy™) O

10

Say we wish to compute y = f(z). The absolute backward error when we compute § = f(Z)

[2—=]

is |# —z|. The relative backward error is Tl The condition number relates backward to

forward error.)
y-y . E-w
y = Ff@)

Kf(z) = lim sup [(f (&) = f(x))/ f ()]

:E_)OHJ? z||<e |(3A3—.’L’)/$|

@>

Think of the condition number as follows (which holds when f is real and differentiable):
| (@)(& =)/ f(2)]
& — | /]x]
_f'@|l=]
/()]

Rf(x) =

The following are common sources of error in a computation:

Error from measurements/ input

Stochastic error (e.g. in Monte Carlo)
e Error due to termination of iterations

e Error due to floating point

Say we want y = Az, and we compute § = (A+ E)e. Then the absolute backward error is || E'||. The
1E]

relative backward error is 7. The absolute forward error is |Ex| <||E||||x]. The relative forward

. ||E E . E
error 1s H||;,T\” < d ”!I”HQCH. We want an expression ”myﬁ’” < /{HA” We have that
15—yl _ (HMH%H)HEH
Iy Iyl 1Al
_ (HMH%H)@
Az /Al
after some algebra, % = A]| HAle. To see this, note

[A[I| A~y -
0 e

note that we have been assuming A invertible, since otherwise the definition of backward error does
not apply.

Since we have for the spectral norm that inf“ﬁfH2 = op(A), we have that ||Az|, > 0, (A)|z]], so

JAlllzl] — o1(4)
that "L < o)

Now, we consider floating point errors, using computation of a dot product as an example. We
begin with the basic algorithm.

11

BwWw o

1:n
+

d x(i) * y(1i)

The computer introduces error in the floating point representation. Due to rounding, we get:
flla+b)=(a+b)(149). |0| < €machine-

fl(axb) = (axb)(1+9).

In the dot product, say we have fl(z;*y;) = z;y;(1+6;) = Ly, where &; = (146;).

Thus, we have that d; = (d;—1 +z;y;(146;))(1+0}) (defining dy = 0), so that

dp=0
di = (0+z1y1(1+01))(1467)
=0+z1y1(1+01)(1+67)

~ z1y1 (1401 +d7) since §;162 very small
do = (z1y1(1+ 61 +07) + z2y2(1+d2)) (1 +85)

~ (21y1)(1+ 61 + 8] + %) +w2y2 (1 + dg + 65):
dp ~ 21y1(1461) + 2292 (1 +02) + . ..
where 01 < Némach, 02 < (n —1)€mach and so on.

Now, if we look at the backward error, say we have d,, = #'y, where % < N€mach, SO that

7

17 = 2llo0 < Mémach [o0
~ T
If we instead look at d =y’ z, where d = y*#, then what we get depends on %

Lecture 7: (9/16)

Binary floating point (IEEE style)

A normalized floating point number is of the form
(=1)*(1.byby...bg)2-2F

Arithmetic on these numbers is the correct result properly rounded (if there is a tie, round so that
the last digit is zero i.e. round to even). This is true for +,—, x,+, /. This means that

fl(aob) =(aob)(1+6) & < emachine

Note that we cannot represent zero just with a normalized floating point number. There are certain
exceptional representations.

e Subnormal/ denormalized numbers are smaller than the smallest normalized numbers, and
are of the form
(_1)8(0b1 - bd) . 2Emin

Note that 0 is a subnormal number, and there is a positive 0 and a negative 0.

12

e Infinities: oo

e Not a Number (NaN)

With the exceptional representations, all floating point operations can return a value in the floating
point system.

Cancellation

If a and b have opposite signs, and are within a factor of 2, then fl(a+0b) =a+b (no roundoff).
However, we wish to analyze relative error. Consider A — B = a(1+d,) —b(1+), where both
inputs have some error. Then the relative error is of the form

a=b=(@=b)| |5,a— b
la — b a la — b

Error is high when the § have different sign, such as when the error is approximately of the following
form

dla+b
|la—b|

Subtraction does not introduce any new error, but it does reveal the error already present in the
inputs.

Consider the problem of finding the roots of 1 — 2bz + 2z2. These are of the form
Er=b+ Vb2 -1
1

Note that the computation of £_ by this formula may face cancellation error. Note that - = =
since the last coefficient is 1. This formula is better for computing £&_ when the quadratic formula
faces cancellation error.

Unstable recurrences

Consider the problem of computing
1
E, :/ e dx
0

One way of doing this is through a recurrence obtained by integration by parts.

1
Ey=1—-
e

E,=1-nE,.1 n>1

Suppose that there is error Ey = Ep(1+6), since we cannot exactly represent e in the machine.
Also, we then have E,, =1—nFE,_1.

do = Ey— Ey = 6E,

En =1- nE’n_l
En =1- nEn_l
dp = —ndy,_1

13

Thus, we see that the errors are of the form d,, = (n!)dEy. Note that if we instead start from large
n and compute the recurrence backwards, then the initial error of representation is supressed by
an n! factor instead of amplified.

Two other issues of floating point arithmetic are:

e Undetected underflow (note that overflow is generally easy to detect). This means that the
1+ 60 model no longer holds, since the relative error of representation can be quite high
(especially as we approach 0).

e NaNs and branches.

1 if x <= 0

2 disp ("<=0")

3 else if x > O

4 disp(">0")

5 else

6 disp(’uh-oh’);
7 end

Running this script causes "uh-oh” to display.

Example 0.3 (Geometric predicates). We finally present a more positive example. An example
of a geometric predicate is whether two points are on the same side of a line or on different sides.
Say we have points C,D and two points that determine a line A, B. One way to solve this is by
looking at

det[B— A, D — A

det[B—A,C — 4]

If these two determinants have the same sign, then predict that the points are on the same side.
Otherwise, predict that they are on different signs.

Assume that all points are in [1,2]2. The bad news is that we can compute the signs incorrectly

if the usual formula is carried out in the input precision. The good news is that if the inputs are
single precision and the intermediates are double precision, then the signs will be correct.

For a sketch of why this is, note that all of the entries of this matrix will we computed exactly.
rp—x4a xp—TA
YB—YA YD —YA

Moreover, all products will be exactly computed since the double precision intermediates have
enough space to hold the exact result of the multiplication of the single precision numbers.

Lecture 8: September 18

n
j=1

1_Z7L+1 N 1

j
=T 1—2z°

Problem du jour: |z] <1, S, =
Consider S, computed by the recurrence
So=0

Spr = (29 +1)(1+61), |6k] <e

What can we say about the relative error?

14

Gaussian elimination/ LU factorization

For a matrix A, we seek a decomposition
PA=LU

where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. We go
through such a procedure to decompose an example matrix.

1 4 7]
A=12 5 8
3 6 10]
(1 0 o]t 4 7] [1 4 7
-2 1 0|2 5 8|=|0 -3 -6
0 0 1][3 6 10 3 6 10
(1 0 0|1 4 7] [1 4 7
-2 1 0|2 5 8|=|0 -3 -6
-3 0 1] [3 6 10| 0 -6 —11
Note that
1 00 1 00
—2 1 0land |0 1 O
0 01 -3 0 1
1 00
commute, and their product is |—2 1 0f. Thus, the operations are independent, and the order
-3 0 1

that they are done does not matter.

A general Gauss transformation is of the form I — Teg where 7; =0 for j < k. Continuing the
above process for one more step, we get to

1 4 7
0 -3 —6
0 0 1

Thus, we have MMy A = U, where M is the first transformation and My is the second. We then
have MoMiAx = Ux = Mo M;b.

Upper triangular linear systems are nice because they are easy to solve by backward substitu-
tion. Moreover, note that if we have a block upper triangular linear system, then block backward
substitution can be used. Thus, for a linear system of the form

el R

we can do block Gaussian elimination,
I o|l[a B] 4 B
—-CA™' I||C D| |0 D-CA'B

15

© 0 N O U R W N =

= e
N o= O

© 00 9 O g W N =

e
w N = O

S =D —-CA !B is the Schur complement. Now, we can use block backward substitution to

solve [A ?] m _ L,_ . f]

)

% Solve Az=b

4 triangular reduction

for j = 1:n-1
tau = A(j+1:n, j) / A(F,3);
A(j+1:n, j:n) = A(j+1:n, j:n) - tau * A(j, j:n);
b(j+1:n) -= tau*b(j);

end

4 back substitution

for i = n:-1:1
x(i) = (b(i) - A(i, i+1:n)*x(i+1:n))/A(i,1i)
end

The number of operations for the triangular reduction is approximately Z?;ll §2 = Io 22 de = %n?’.

/4 Solve Azxz=b, wersion 2
% Stores intermediate multipliers tau in A’s lower triangle
for j = 1:n-1
A(j+1:n,3j) = A(j+1:n,3)/A(5,]3)
A(j+1:n,j+1:n) -= A(j+1:n,j)*A(j,j+1:n)
end

for j = 1:n-1 7 <mplicitly solve with L
b(j+1:n) = b(j+1:n) - A(j+1:n) * b(j)

end

for i = n:-1:1
Jbacksub

end

Thus, for solving multiple linear systems with the same A but different right hand side, we only
dod the O(n3) decomposition once.

Note that our decomposition is M,,_1--- M1 A = U where the M} are unit lower triangular. Since
such matrices form a group, we have that M, _1---M; is unit lower triangular, and hence A =
LU = M 1-~-Z\47;11U , where L is again unit lower triangular due to the group property. L has
entries which are the multipliers 7. Thus, the loop in the algorithm above that transforms b before
backsubstitution is an implicit solve with L.

Lastly, a Gauss transformation is geometrically a shear transformation in a particular coordinate
direction. These do not change volume and thus can be used to compute volumes of parallelipipeds.

Lecture 9: September 20

We still consider a decomposition PA = LU. Given a decomposition A = LU, to solve a linear
system Ax =b, we see that LUx = b, so first we solve Ly = b and then Uz = y. These two solves
are O(n?) once we have the decomposition.

16

Consider the block submatrix structures

A An L1y O Ui Upe
[Azl Az Loy Lo 0 U

We if A= LU, we have that

U — LUy L11Ui2
Lo1Ui1 LooUao + L1 Uia

L11U11 = A1 we can compute by LU factorization

L11U19 = Aqg, so Uy = L1_11A12 give linear equations that can be solved

Lo1Upy = Asq, so Loy = Ay Uyt

LQQUQQ +L21U12 = Agz, SO we compute the LU factorization L22U22 = AQQ — L21U12. S =
Ago — Lo Uqs is a Schur complement.

Note that S = A22 — AglUilLilAlg == A22 — AQlAilAlg.

Say we want the trailing submatrix of A~!. So we want to solve for Y in

A11 A12 X B 0
After Gaussian elimination, we have

An Aro X| |0
0 Ao —Ag AT A Y| |I

So in backward substitution, we solve SY = I. Thus, we have another way to think about the Schur
complement: it is an inverse of a submatrix of A~1.

Using blocked LU factorization can be efficient by taking advantage of L3 BLLAS-based routines.

Proposition 1. In decomposing A = LU, Gaussian elimination computes
A+E=1LU

where ||E|| < neHiH H(jH Where L and U are exactly computed factors.

Note that this gives a weak backward error bound if HLH and HUH can blow up in size. For instance,

this can happen when we have small diagonal elements appearing in the process, since then the
divisions in Gauss transformation steps are by small numbers.

Here we have rough argument for the proposition.

7j—1
e = fl(aje— Y Ljitiir)
im1

17

Now, we use our previous dot product analysis

7j—1
ik = ajr(1400) — (O Litiar) (1+ 0+ &)

=1
1 i .
Gk = 140, [ajk - (;lﬂﬁikz)(l +0+ 50)}
=1
= Qg — Y Ljillik + €
i=1

In partial pivoting, at each step, we permute rows such that all multipliers are <1 in magnitude.
This controls the magnitude of the entries of L. Then we have

121 _ ndlZ) 0]
1Al < A
w2elo
<
<A

Where HU H /|| A]| is called the pivot growth factor. Note that we can also consider a decomposition

PAQ = LU, in which we use row or column pivoting (rook pivoting). We can also decompose
PAQ = LU where we pivot so that the highest-magnitude element in the remaining submatrix
on the diagonal. Other methods include communication-avoiding variants, such as tournament
pivoting. These work well for parallel setups. CALUTP = communication-avoiding LU with
tournament pivoting.

Lecture 10: September 23

Problem du jour:

Solving Ax = b by Gaussian elimination with partial pivoting gives (A+ F)% = b with % < 3n26%.

The factor of 3 comes from the errors of the 3 steps of decomposition, forward substitution, and
backward substitution.

We now discuss how backward error and conditioning bounds forward error. Suppose the exact
solution is Az =b. Using linearized perturbation analysis,

6Ax+ Adx = b
bz =AY (0b—0Ax)

. A
we want to control dx, so we want % in terms of % and %.

Joz] || A70b—A""0Aa)
Bl Tal

HA*l(SbH +HA*15AJ:H
<

]

18

we bound the first term as such

[[

T
|4 l160]
= el /1Al
163
= |2~ vy
Kk(A)

where we use that

[Az]| =l[o] = [Allllz| = [[bll = ll=ll = =% IIAH

also, we bound the other term by

S
B4l |
4~

ol
=5 A

~ A~

Now, suppose we have a true solution Ax = b, and we have an approximation AZ =b. Then we
have that

Az —Ax=b—b
A2 —AZ+ Az —Ax=b—b
b—b

f—x=A"Yb—b—E2)

note the similarity to the above expressions from linearized pertubation analysis. With some
algebra, we get that

12| @Euuﬂ|!@—db
<r(A) (1o b
R

assuming that HAflE H < 1, we consider the relationship between (A+ E)Z =b and Az =b.

Ax

(A+E)z
(I+A~” 1E)

>
||

I+A7E)~!

19

so that by summing the Neumann series we have that

(I+A7'E)=|> (-AT'E)/
7=0
> _ J
<> |4
j=0
B 1
S 1-[ATE||
1] 1

e =
lzfl — 1—[[A=E]

then we have that

+
A o]

s s 1z ey
El <1_H(A)H§”<)

Iterative refinement

Suppose that we compute LU=A+E= fl, where E is modest (so not necessarily very well
controlled). Consider the following iteration

ro=A"" (=07Y17)

Ax():b—ro T’oZb—AiL‘o

A(xg—x)=—rp subtracting Az =10b
———
uo

z=x9+Arg

T1 =T+ A_lro

We have the iteration

Thus, we have

=(I—-A"14)
= 12171(14 — A)ek
= (A7 E)ey

so that the errors satisfy
N N k
lexsall <[A E||llexll < A7 E|| B0l

so the errors go to zero if HA_IEH <1.

20

Lecture 11: September 25

Problem du jour: Suppose we have a finite dimensional vector space with a norm such that
Izl < | =]
for any vector z. Show that

|z| <|y| elementwise — H lz] || < H lyl ||

Let X be a normed vector space, and X™* its dual space, the set of all linear maps X — R. We
define the dual norm on elements z* € X™* as

lz*][, = sup |a]
zeX,||z||=1

Recall that for X an inner product space with Euclidean norm, [* € X* satisfies I*z = (y,x).
I1*]], =lyll- lsc and l; are dual to each other. Also, for 1/p+1/q =1, we have that [, and [, are
dual to each other.

Suppose [|z]| <|||z| || for any z. What is a u such that u*|z| =||z| and [|u*|| =1. We have that
w*la] =300 il

If u; <0, then consider y such that y; =|z|; for j # i, and y; = —|z[;. Note [y[=[z|. Then we have

uty >ut|z| = |Hw|H

|y] <[lu|[lly]
so we have that u has no negative entries. Now, we have that
][] = w*|=] < u”ly]

< Jla il

Condition Estimation

Now, we consider, how do we estimate HA_l H given PA = LU in less than O(n®)? We wish to find

o A
1 ||9’3H1:1 1

= max max (LA
ge{£1}™ =l =1

note also that {£1}" ={¢ | ||¢||, =1}. To optimize, we consider
A a+oz)=¢TA e+ T A o

this can be done in O(n?) time. In MATLAB and Julia, condest is using a routine based on this
condition estimate.

21

Consider again Az =b, A= A+ E, where |E| < p(n,€)|A|. Instead of using norms to study the
error, we consider componentwise errors. We can derive scale invariant condition numbers, so that
for instance differences in units of measurement do not affect the condition number.

Ax =10
Adz+6Ax =0
dr=—A"16Ax

(02| =|A7||3.A]|a
<|a~!|Al(n,e)

assuming we have a norm with ||z|| <|||z[||, we have

o < []~"] 14] ¢

We define
"frel(A) = H ‘Ail‘ ‘A‘H

let us consider the effect of scaling A
ra(A) = |DAI DA
= Aﬁ)lMDAw

o I

- A”“Aw:mmﬁb

so this condition number is invariant under scaling.

Now, consider the residual » = b— AZ. Then we have

< /@(A)HZ” previous computation

turning to a matrix error, we wish to find
min ||E|| st. (A+E)z=5b

observe that

Az =b—r
~T

(A+r=)i=0
1213

this is a rank one perturbation of A in the direction that matters.

22

Symmetric factorization

Let A= AT for some real matrix A. We associate the quadratic form ¢(z) = 27 Az. Principal
curvatures are eigenvalues, or we have up, down, flat directions. If Z is nonsingular, then Z7 AZ
and A have the same inertia.

The standard symmetric variant of LU is PAPT = LDL", where L is unit lower triangular and D
is diagonal. Note that D has the same inertia as A. If A is positive definite, then we have A= LL”,
where L is lower triangular. This is called the Cholesky factorization.

The algorithm for Cholesky factorization is very similar to LU factorization, except we need not
pivot for stability.

Lecture 12: September 27

The algorithm for Cholesky factorization is much like Gaussian elimination. Suppose A is symmetric
positive definite, and break it into blocks.

air az| _ |l 0 ||in 13,
aly A lo1 Loa| | 0 Lo

2
ajr =1i;

Then we have that

aty = Il
Az = Lo L3, + 12113,

note that a;; # 0 due to A being spd, so 11 # 0. Then ly; is determined, (there is no division by
zero). Finally to find Loy, we recurse, and find the smaller Cholesky factorization

LogLly = Agg — 19113,

an argument can be made for why Ags — lgllQTl is spd, so this is possible. Note that by properties of
spd matrices, no pivoting is needed. The Cholesky factor L is often analogous to the square root
of real numbers in certain applications.

Diagonal Dominance

We call a matrix A strictly diagonally dominant if
|ajj|>Z’aij| j=1,....n
i#j
Decompose A into D+ F, where D is a diagonal matrix containing the diagonal of A, and F' is the
off diagonal. Then A is strictly diagonally dominant if and only if
7o~ <1

Then we can write A= (I +FD~')D. This can be a useful decomposition, as D is easy to solve
with. The Schur complement is also diagonally dominant, so Gaussian elimination can be done
without pivoting.

23

Tridiagonal Matrices

Consider A a symmetric positive definite tridiagonal matrix, with diagonal given by (aq,...,)
and (fi,...,0n—1). Applying an iteration of Cholesky factorization, we have the lower right block
S, where

as—fBilar B
S = B2 o

Each iteration takes constant time, so Cholesky factorization takes linear time for such matrices.
Tridiagonal matrices are a special case of banded matrices.

Sherman-Morrison-Woodbury

Suppose we have the linear system

A Bllz| |f
C Dl |yl g
Blocked Gaussian elimination gives a Schur complement of S =D —CA~'B. We have Sy =g —

CA™'f and Az = f — By.

Consider a similar problem

(A+UWT)z = f
where A is updated by the (low rank) matrix UW?. Define y = WTz. Then we can rewrite the

e Al

z= (A" - AT UI+wT AT U) Tt wTATY f

Then we have

SO wWe can rewrite
(A+uwht=A"' —Aalu(g+wrAT U)W AT

this is the Sherman-Morrison-Woodbury formula. Note if we already have A~!, then to update
A~! the only inverse that needs to be computed is of I +W7TA~1U, which is a small matrix if
UWT is low rank.

Vandermonde matrices

Suppose we have a degree n— 1 polynomial p(z) = >, cjzi~1, and we have sample points (z;, fi).
We wish to find the ¢; that allow p to interpolate the points. If we define V;; = $g_1, then Ve= fis
our system, where ¢ = (¢1,...,¢,). This system is quite ill-conditioned, so other methods (of which

there are an abundance) should be used for polynomial interpolation.

24

Circulant matrices

A circulant matrix is one of the form

aj az as ... Qp,
(079 al a9 oo Qp—1
ap—-1 an a1 ... QAap-—2
ai e al
such a matrix is determined by the n elements (ay,...,ay). The linear system Cz =y can be solved

very quickly. C' is diagonalized by the Fourier transform. The F' be the Fourier transform matrix.
Then

FAF 'z =y
z=F\1F 1y

so the system can be solved in O(nlogn) time.

Toeplitz and Hankel matrices also have fast linear solve methods due to their structure.

Lecture 13: 9/30

Problem du jour: Argue that if Z ~ N(0,I), then RTZ ~ N(0,C), where C = RT R is a Cholesky

factorization.
Recall if X ~ N(0,C), then
L7
p(x) < exp (f 2% C x)

If C=RTR,C-'=R 'RT. Then for z=R Tz, so that z = RT z, we have
1 _ _
p(@) ocoxp (=5 (" R)(R "))

= exp (- %zTIz)

Sparse LU factorization

Naive LU factorization on a sparse matrix may destroy the sparsity pattern. For the example from
our homework, the matrix

X X X X X
X X X X X
X X X X X X X

25

has sparse L and U factors, whereas

X X X
X X
X X

has potentially full fill.

In Gaussian elimination, we want to reduce filling and maintain stability. General LU is of the
form:

PAQ=LU

where P is a permutation matrix chosen for stability, and) is a permutation matrix chosen to
reduce fill.

In this lecture, we focus on Cholesky factorization, since then we need not consider pivoting for
stability. We define fill as nonzeros in L and U that are zero in A. We can think about fill by
taking our matrix and associating it with a graph. Consider A € R™*™ as a graph on n nodes,
where we define

V={12....n} E={(j)]ay#0}
Eliminating by node ¢ causes all neighbors of ¢ to be connected in a clique in the Schur complement
graph.

X X
X X
X X X X
X X
X X
X X X X
X X X

The graph of this matrix is a tree. For any tree, we can do Gaussian elimination without fill. We do
this by eliminating by the leaves first. For general sparse matrices with cycles, we cannot eliminate
fill. To do Gaussian elimination on matrices with general graphs, we approximately treat the graph
as a tree.

For instance, for a square mesh graph, we use nested dissection. The general idea is to:

e Find a small vertex separator such that paths between one side and the other must go through
the separator

e Recurse on the separated subgraphs

We can look at connectivity at the block level. Then we do not have fill that falls outside of
the block pattern. On an n x n mesh, with O(n?) = O(N) unknowns, then unstructured (dense)
Gaussian elimination is O(N3) = O(n°). With a rough analysis for nested dissection, eliminating the
final Schur complement that has n nodes that are densely connected together contributes O(n?).
We also have two Schur complements at approximately half the size, ~ n?/2 nodes. This takes
20((n/2)3) =~ c2(n/2)? = (¢/4)n> time. The next step takes c4(n/2)® = (c¢/2)n3. Thus, the total
cost is about O(n®) = O(N®/2) due to the geometric sum structure. This is becase forming each
Schur complement is (asymptotically) less expensive than eliminating it.

26

On a 3D mesh, of size n xn xn, N =n3, then dense solves take O(N?3) = O(n?). The top level
separator (an n x n x 1 slice) has n? degrees of freedom. Gaussian elimination on this separator
Schur complement takes O((n?)3) = O(n®) = O(N?). Again this determines the asymptotic cost.
Thus, people often use additional structure of the Schur complements (depending on the problem)
or other methods for 3D meshes.

Lecture 14: 10/2

Least squares

Say we have observations T1,..., Ty, with corresponding independent variables C1,...,C),, and we
wish to fit a function 7'~ aC' + 3. We can frame this as solving the least-squares problem

I}}%li (Tz — (aCiJrﬁ))z
P

equivalently, in matrix form,

min|| | :
a.p

™ R

]_

so our abstract problem is for A € R™*"™, m > n,
1 2
min | Az~ b]
let p(z) = L[| Az — b||>. Then we have
1 T
plr) = 5 (Az—) (Az)

1
2

1
dp(r) = B (&UTATAQC + 2T AT Az — 25xTATb) only perturbing x
=0z (AT Az — ATD)

1
2T AT Az — 2T ATp+ §bTb

setting the derivative equal to zero, we have

AT Az = ATd
in different notation,
1
p(z) = §TT7’
Sp(z) =orlr
=627 ATy

because 67 = Adx. Setting this to zero, we want r so that ATr = 0. Thus, these equations are
called the normal equations, since finding the r where this quantity is zero is finding an r that is
orthogonal to AT. The normal equations are

1
min || Az — b|" = ATAz = ATh — 2= (AT4)"TATD
we define AT = (AT A)~'AT. This is the Moore-Penrose pseudoinverse. Note that it is in fact

the inverse of A for nonsingular A.

Definition 0.1. A pseudoinverse of a full column rank A € R™*™ where m > n is a B € R»*™
such that BA=1.

The Moore-Penrose pseudoinverse is an example of a pseudoinverse.
II = AB where B is a pseudoinverse satisfies
1= ABAB=AB =11

so that it is a projector. For the Moore-Penrose pseudoinverse, we have a projector II = AAT. In
our least-squares problem, Az =I1b. Also, b— Ax = (I —II)b.

Statistics and least squares

Now, we consider the statistical justification for the least-squares problem. Suppose we have samples
from N(Ax,%?), where z is unknown. Given a sample b, we wish to estimate z. We want a simple
statistic, so we take a linear estimator & = Lb for some linear function L. We desire this estimator
to be unbiased, so

x =E[2] =E[Lb] = LE[b] = LAx

we wish to find a pseudoinverse that minimizes the total variance Var|z].
LAx
Var(z] = E[227] — E[2]E[2]"

Z

To solve the normal equations A7 Az = ATb, we have different methods.

e ATA= RTR (Cholesky). This implies that
R"Rx=A"b
Rz=RTA"b
r=R Y (RT(ATh))
we consider the intermediate factorization
RTAT = (AR 1T = Q7
note that
QTQ =R TAT AR
=R TR"RR™!
=1
so () has orthogonal columns. This gives the economy QR factorization A = QR

28

e A=(QR (QR) is thus another method for solving the normal equations
e A=UXVT (SVD). Then we have AT = VX ~1UT.

Lecture 15: 10/4

Problem du jour: Suppose A is spd with a Cholesky factorization A = RT R. How does on compute
dR (in terms of 0A)7 Here is a hint:

6A=6R"R+R'6R
RT§AR™'= R TSRT + JRR!
—_— —
lower triangular upper triangular

Note that

1 1
~||Az —b||* = = (Az—b, Az —b)
20— 2
¢
do = (Adx,Ax —b)
so to minimize ¢(x), we want (Adz, Az —b) =0 for all ox.
Note that the expectation

E[XY] = / X(2)Y(2) du(2)

satisfies the properties

E[XY]

E[aXY]
E[(X1+X2)Y]
]

]

E[Y X]

aE[XY]
E[le] [X2Y]

[2

| \/

[2

0 < X =0 if disallow zero variance random variables

so that the expectation is an inner product.

In finite dimensions, we can always choose a basis such that

() =y Mz M some spd matrix

Consider the L?[—1,1] inner product on polynomials

1
(P, @) r2(-1,1) = /_lp(w)Q(x) dx

d d
<Zaixi,2bjxj>,;2 = ZZaibj<:U) e
j=0 =0 i

=bv"' Ma, M= (2171 o

29

Gauss-Markov

Suppose we have b ~ N(Az,%?), and we wish to find the best linear unbiased estimator (BLUE)
for x. The likelihood is given by

C-exp (— %(b —Az)TE2(b— Aa:))

to maximize the likelihood, we solve
min||b— Az|/%_»
S0 we want
(Adz)TY™2(b— Az) =0
(ATE24)2 =AT% "%
let A;,Q = (ATY724)"1(ATX~2). This is a pseudoinverse. If ¥ is the identity, then this is the
Moore-Penrose pseudoinverse as seen before.

We require that our estimator & satisfies

Lb linear in data

g
Ejz]=LAx =z ie. LA=1 unbiased

Let L be of the form L = ATZ,2 + F for any F such that FA =0, so that LA = 1. Then we have
that
Lb~ N(z, LY*LT)

L2 = (AL ,+ P23 AL ,+ F)T
= ATY2(ANT 4 2[ATS2FT)S FR2F!
where [B]® denotes the symmetric part of B. The middle summand is
(ATS724)1ATe 292 = (AN Y (FA)T

thus, the minimizing choice of variance is F =0 where we use the partial order A > B if A— B is
positive semidefinite. Hence, x = A;_Qb is the BLUE.

QR Factorization

Let A € R™*" The full QR factorization is of the form A = QR where QTQ = I, R is upper
triangular, Q € R™*™, and R € R™*",

The economy QR factorization is of the form A = QA}?, where QTQ =1, Ris upper triangular,
Q€ R™" and R e R™"™*"™,

The Gram-Schmidt process is of the form

® a; =(qiT11, r11 = HGIH

® a2 —q1 (Q1Ta2) = (272
12
Rt

30

e oW N =

[e

k—1 T
® A —2.5=194; 45 = 4kTk
~——

Tjk
with this construction, we have that a; = Z§:1 qj7jk- Thus, we can reconstruct

11 T12
[al a2 } = {ql q2 } 722

this gives a QR factorization. However, Gram-Schmidt is foward-unstable. The big idea to compute
a QR factorization in a nice way is to think of an LU—like sequence of operations, but instead
of Gauss transforms (shears), we use orthogonal transforms consisting of reflections (Householder)
and rotations (Givens).

Lecture 16: 10/7

We present a method to compute the QR factorization using orthogonal transformations. A step
of Gaussian elimination is of the form:

1 0] a1 a2 _ ailp ai2
—% I laga; Ao 0 S

We want a reflection that maps
o [2] [l
Y 0

Note that the only nonzero entry of the result must be +||v|| since orthogonal transformations
preserve the 2-norm. We wish to find the plane of reflection, as defined by a vector normal to it.
The normal direction is given by v+||v||e;. We choose the sign that avoids cancellation errors, so
choose sign(v1). Normalize this to get u, and define H = I —2uu’.

Thus, our algorithm to get the reflector is

e 4 =uv=|v| e (sign chosen as sign(v;))

Our algorithm for Householder QR is

for j = 1:n

u_j = HH(A(j:m), j3)

Store u_j

% Apply reflection to A:

A(j:m, j:n) = A(j:m, j:n) - 2*%u_j*(u_j T A(j:m,j:n))
end

31

The total cost is O(mn?).

Now, we consider decomposing a matrix using rotations. Thus, we want a matrix of the form

that satisfies

which implies that (s,c) is orthogonal to (x,y), and thus (¢, —s) is parallel to (x,y). Thus, we have

that
xz -y

o /22 + 42 22 + 2
Applying Givens rotations or Householder reflectors to a matrix is backward-stable. These are
orthogonal transformations, the nicest types.

Consider the case of a sparse matrix A. If A is sparse, and AT A is "nice” (in which elimination
does not produce much fill), then since R is also the Cholesky factor in a QR factorization, we have
a sparse R. Since

ATAz = ATb = Re=R"TA")

this is very nice.

Now, suppose we have a constrained optimization problem

min|| Az —b|* st Cz=d

where A € R™*™ for m >n, C € R¥*" for k < n. We can use Lagrange multipliers. Let £(z,)\) =
2| Az — bl|>+ AT (Cz —d). Then we have

6L = 6xT AT (Azx —b) + 62T CT A+ 0N (Cz —d)
[ax]" ([4TA T[] [b
RN C 0| |A d
Another way to change the problem is to consider Cz = d, and suppose CT = [Ql Qg] l}?] . Then

the constraint is RT Q7z = d. Define y = QTz, so that

[B1 0] Bj =d

Note that y; is contrained by this equation, and yo is unconstrained.

Lecture 17: 10/9

Say we have the vectors 1,z,22, and want a QR decomposition, where we use the L? inner product.

Tir T2 7T13
{1 T 332]:{[/0(30) Li(x) Lz(x)} T22 T23
33

32

where Lo, L1, and L9 are orthogonal polynomials of degree at most 2. We have two ways to approach
this. First, we have ATA= RTR and Q = AR™'. Here we have the Gram matrix and the Cholesky

factor
2 0 2 V2 oo ¢
T A 2 . 2
ATA=10 3 0 R={0 2 o
3 03 0 0 5

The other method to compute the decomposition is by Gram-Schmidt. The resulting Lg, L1, Lo are
Legendre polynomials.

Error Analysis of Least Squares

We consider the sensitivity of 2 and the residual r = Az — b in the solution of min,|| Az — b||*>. Say
we have A = l(l)], b= lj Then we have z = A'b = e. If we instead have b= l_lel, then we have

x = ATh = —e. Note that this is a large relative change in compared to a small relative norm
change in b.

We let 0 be the angle between b and the range space of A,

Az 151 Il
cos(f) = sec(0) = tan(8) =
O="r =O= ey O =4

For general A, define the condition number

K(4) = || AT| = Z;Eii

since we are using the 2-norm.
First, we consider sensitivity of y = ATb. We have that
oy =0ATb+ AT 6

16y [l <l[o Al B[+I[Allf|5l]
loyll - flobilliell [lAlliob]

lyll = [[ATo]—[|ATS]
_ Aol (HMII H5bH>
[ATBI| M LAL o]

Let A=UXVT be an economy SVD. Then we have

IANBl < o1 (A) b
478 = ou ()T

IA[IIB] _ o1(A) [[b]
[ATD] ~ o, (A) UTb
= k(A)sec(0)

33

Now, we consider the conditioning of x = (AT A)~*ATb. Then we have

ox = —(ApA) L (GAT A+ ATS(ATA) 71 AT 4 (AT A) 1 (5 AT + AT5b)

After some basic work, we have
[6A]

1]
WIﬂ(A) < (KJQ(A) tan(6) + n(a)) Al +k(A)sec(0)

150]]

2]

Lecture 18: 10/11

Problem du jour: If Y = R(A) and V = R(B), how can we compute

max min Z(u,v)
ueld vey

Z(u,v) being the angle between u and v.

Say we have U,V € R™* where UTU =TI and V'V = I. Our problem is

min max_cos(Z(u,v))
u=UzxeUv=VyeY

min = max v u=y'VIUz
u=Uzeld v=Vyey
lel=1" =1
There exists a choice of basis for spaces such that the problem is

min max y! Xz
llz]|=1]ly[l=1
where the solution happens to be o (v).

Now, consider the largest angle between R(A) and R(A+ E). This depends on K(A)%. Thus, we

have issues when k(A) > 1. This occurs with ill-posed problems, such as when we have correlated
explanatory variables.

Lecture 19: 10/16

Problem du jour: Suppose A € R™*™ m >n. How can we solve

min%\|m||2 st. ATz =0
note that the linear system is underdetermined, so there are multiple z satsifying it. Say we have
a full QR decomposition A =QR = [Ql Ql} l](%)ll . Then our constraint is R QT x = b. Assuming

A has full column rank, we have Q7 z = Rl_Tb. We can write

r=Q1Q1r+QQ5x
= Q1R Tb+Qay
2
ll® = | R Te||” +llyl?

34

Thus, to minimize |||/, set y =0, so we have the minimizing z as & = Q Ry L b.

Let A=U SVT be a full SVD. The general Moore Penrose pseudoinverse if AT = VE~1UT | where
¥~ is the matrix of the same structure as X7 consisting of the nonzero singular values of A
inverted.

Regularization ideas:

e Pivoted QR and factor selection
e Tikhonov/ ridge regression

e Truncated SVD

e [! and the lasso

e Regularization via iteration
Parameter choice:

e Morozov
e [-curve

e Cross-validation

Say we have A = {al as ... an} and want to pick columns of A that give a well-conditioned

matrix (as linearly independent as possible). The idea for pivoted QR using Gram-Schmidt (it
would be better to use Householder transformations but this method is easier to explain) is:

1. Pick a; with largest norm and swap it with the first column
2. Compute a; = (I —q1¢)a; for each column

3. Pick a; with largest remaining norm, swap with the first column under consideration, and
repeat

This computes a decomposition AIl = QR for some permutation II. Moroever, we have |ri;| > |rj;|
for ¢ < j. From here, we can choose columns that have diagonals with magnitudes above some
tolerance. MATLAB utilizes this when solving nearly singular linear systems.

The lasso is of the form:
. 2
min [|Az — bl + Allz[
reR”

The regularization term encourages sparse solutions x. However, the loss is not smooth.

Tikhonov regularization (aka ridge regression) is of the form:
. A . b 2)\2 2
min || Az —bll3 + A%zl

Note that this is equivalent to the ordinary least squares problem
min 4 T — b
zeRn || | AL 0

35

2

2

The normal equations are of the form
(ATA+ XDz = AT

Denote the solution z) = A;b = (AA +A2I)~1b. This estimator is not necessarily unbiased, but has
lower variance in general. Say we have an economy SVD A =UXV”. Then we have

Al = (AT A+ 221 AT
=V) W TysuT
— VE(Z2 +)\2I)71UT

=vsi'uT
so the nonzeros of 1! are o7t = -2
A J a]2.+)\2 :
For truncated SVD, let we instead take
o1)% oj>T
J 0, 0; <T

for some tolerance 7. This means that we take a lower rank approximation to A, instead of blending
the singular values with a parameter .

Lecture 20 : 10/18

Kernel methods

One of the reasons we may solve a least-squares problem is to fit a model to data. We may want
to predict f(a1,...,a,) ~ > 7 ajzj, so we minimize HAx—ng. However, we may want to fit a
nonlinear model.

Say we have data (z1, f(x1)), (z2, f(x2)),...,(Tm, f(2m)) where z; € R™. The goal is to find a model
s(z) that approximates f(z). The simplest model is (using statistical language) s(z) = 276, in
which our problem is || X5 —yl||.

An idea to extend this is to use a feature map ¢ : R® — RN, where N > n. If m > N, then
min||®f —yl| is still a least-squares problem, where the ith row of ® is p(x;), ®;; = (¢(z;));. Then
our model is s(x) = ¢(z)T 8. In other terms, we have

a1ty G=2o"®, Gij = p(z:) ()

0 x)TR’l) (R’T@Ty) G=RTR

Now, for m < N (we can think of N as infinite if our feature space is just some Hilbert space, in

36

which case we use other inner products instead of the Euclidean inner product)

)
=o(z)"B B=0(@)y

T

Define a kernel function k(z,z’) = ¢(x)* ¢(z'). Now, note that

s(z) = (p(z)" @)(@TP) "y
=k,x(Kxx) 'y

Where [Kxylij = k(x;,y;). Note that this does not explicity use ¢. This is called the kernel trick.
Note that ® is of the shape

p(z1)"
o= :
P(zm)T
We consider whether we can predict ¢(z) well as a linear combination of ¢(z1),...,¢o(xy). We

solve a problem of the form
minH@Td(x) —o(x) H

Then f(z)~d(z)Ty = >ty di(w) f(z;) = s(r). Indeed, d(z) = (T ().
Also, we have

Kxxc=y

s(x) =kyxc= Zk(w,xj)cj
j=1

Often our kernel matrices have nice structural properties that can be taken advantage of here.

Consider the squared exponential kernel
k(z,y) = e llo=vl*/20%

Then we have that Ky x is typically almost low rank, meaning the eigenvalues decay (of course,
Kx x is positive definite, so it is actually full rank). Usually, we solve (Kxx +n*I)c =y, for which
there are many different justifications. Say we have a low rank decomposition Kxx ~ ZZ*. Then
the goal is to solve (ZZ7 +n?I)c=y.

We want something of the form z(z)”d rather than z(z)7(Zc). We observe that the equations for
d are of the form (after some manipulations) (note: missing a transpose somewhere)

min || Zd —y||* +n°||d||”

37

This is a regularized least-squares problem. This least-squares problem is n x k, which is much
nicer to solve.

Suppose we have (I +ZZ")c =1y, and consider a QR factorization

=11

compute d = R~'Q¥y and the residual is c if we put in d, which here is of the form ¢ = +(y — Zd).

Lecture 21: 10/21

The standard eigenvalue problem is
Axr = Az AeC"™ or R™", XeC
For matrix decompositions, this is of the form

AV =VA A diagonal
or AV =VJ J a Jordan matrix

Also, we have the Schur form

Real form: AQ = QT T quasi upper triangular, QTQ =1, Q, T € R™"
Complex form: AU =UT T quasi upper triangular, U*U =1, Q, T € C™*"

where a quasi upper triangular matrix has 1 x 1 or 2 x 2 diagonal block.

A subspace V C C" is an invariant subspace for A € C"*™ if AV C V. The complex Schur form
satisfies U. 1., is an orthonormal basis for a & dimensional invariant subspace. This is because

AU 1. =U. 1.6T1:1 00
A general invariant subspace basis V € C"** is of the form
AV=VL LeCk*

Example 0.4. Consider a 2 X 2 matrix

The characteristic polynomial is
p(z) =det(A—=zI)
=(a—2z)(d—2z)—bc
=22~ (a+d)z+ (ad—bc)

—— ———
tr(A) det(A)

There are several cases, depending on g = b? —4ac = tr(A)? —4det(A).

38

e ¢ <0 = 2 complex roots
e ¢ >0 = 2 real roots

e ¢ =0 = eigenvalue of algebraic multiplicity 2 Note that the space of matrices where this
holds has codimension 1. There are two subcases for this:

— Degenerate (geometric multiplicity 1)
— Full geometric multiplicity AV =VAI = A=AI
We can consider more general eigenvalue problems, like the generalized eigenvalue problem

Ax =AMz

where M is often taken symmetric positive definite.

Also, we can consider a nonlinear eigenvalue problem
T(Nx=0

where T : C — C™*" is analytic.

There are also more specialized eigenvalue problems, such as the symmetric or Hermitian eigenvalue
problems, in which A = A" or A = A*, respectively.

Figenvalue problems also differ based on their goals:
e All eigenvalues and eigenvectors (or the Schur form)
e A few eigenvalues and eigenvectors

e All eigenvalues, no eigenvectors

Reasons to solve eigenproblems

Figenproblems can be used for myriad applications:

e Solving nonlinear equations
e Solving optimization problems (maybe approximately)
e Dynamics (linear, constant coefficient)

— of numerical methods
— of stochastic processes

— of physical systems
Example 0.5. Consider a nonlinear equation
f(z)=0 f:R — R fairly smooth =z € [a,b]

With a good initial guess, we can run a Newton iteration. Say we do not have a good initial
guess. Another method is to approximate f(z) = p(z) where p(x) is polynomial. Say we have

39

p(x) =2 — ZZ;& Cn_p—12" %=1 Then we can find the roots of polynomial with an eigenvalue

algorithm, since they are precisely the eigenvalues of the companion matrix

Ch—1 Cp—2 ... C1 (O
1

1 0

Indeed, if A is a root of p, p(\) =0, then with v = (A""1,... A1), we have Cv =v\. MATLAB’s

roots computes the roots of a polynomial by running an eigenvalue algorithm on the companion
matrix.

Example 0.6. Now, consider the problem of graph partitioning. Say we have a graph G, with
labeled nodes z; € {£1}. We want to partition the nodes and consier the quantity >°(; jyecp (i —
a:j)z =4 -number of edges cut. The graph partitioning problem is

L 7
in—x" L
min - z° Lz

n
s.t. Zl’j =0
j=1
s.t.x e {£1}"

meaning we want to minimize the number of edges cut with a partition of the nodes into two equal
size groups. This problem is NP-hard. We relax the problem to

L r
in—z" L
m1n4a: T

n

S.t. ij =0
j=1

s.t. ||lz]|? =n

which is a quadratic problem with a quadratic constraint, and one additional constraint. This looks
like
! Lx

T
ex=0
Ty

min

Lecture 22: Perturbation Theory (10/23)

For X invertible, we say A is similar to X "'AX, or that A and X ' AX are related by a similarity
transform. We make use of the following theorem about the eigenvectors and eigenvalues of certain
transformed matrices

Theorem 1 (Spectral mapping theorem). If F': C — C is analytic on the spectrum of A, A(A),
then f(A) has the same eigenvectors as A, and eigenvalues f(\) for A€ A(A).

This is clear in the case where F' € C[z] is a polynomial. In fact, when A = VAV~ is diagonalizable,

F(A) = ichJ' =VFA)V!
j=0

40

For a general analytic F(z) =322 c; A%, the mapping is given by taking limits and is
0 .
F(A)=> ¢A=VFAV!
j=0

Observation 0.1.

e Eigenvalues are continuous function of matrix entries

e Eigenvectors are not continuous in general. However, they are continuous locally, away from
eigenvalues of higher multiplicity. For instance, consider

1 0 a b

0 1 +e€
and can be chosen arbitrarily by varying

b
d b
a,b,c,d, which does not vary the matrix entries much due to the € scaling.

. . a
In this case, the eigenvectors are those of .

Example 0.7. Consider the matrix

The characteristic polynomial is p(z) = 22 — 2Az+ (A2 —¢). The eigenvalues are thus given by A4 /e.
In general, matrices close to Jordan blocks have

For an isolated eigenvalue (i.e. one of multiplicity 1), we have differentiability. Say we have A an
eigenvalue with right eigenvector v and left eigenvector w

Av=v)\

w*A = \w*
Then we differentiate

0AvV+ Adv = dv A+ vdA
(A=A)ov+ (6A—6X)v=0
w* (A= AN)ov+w*(0A—dA)v=0
w*(0A—0A)v =0
w*d Av

w*v

oA =

We bound the norm
[w*[[ISA[]|v]l
[w*vl

= |sec(f(w,v)) [0 Al

[0A| <

Thus, we can expect |dA] to blow up when w and v are nearly orthogonal. To sanity check this,
note that for a Jordan block J = 3 1 , we have that Je; = e and el J = Ael. Thus, in this

case, the left and right eigenvectors are orthogonal, so the bound does blow up.

41

Gershgorin

Recall that any diagonally dominant A is invertible. If A— AT is diagonally dominant, then A ¢ A(A).
Thus, A € A(A) implies that A — A is not diagonally dominant, meaning there exists some i such
that |a; — A < Z#i|aij|. This implies that there exists some 4 such that A € B, (ai;), where

pi = Zj;éi’aij’-
Theorem 2 (Gershgorin’s Circle Theorem). Define the Gershgorin disks G1,...,Gn by
g, = {Z € (C:|aii—z| < Z|aw|}
J#1
Then

o A(A) CUi Y

o If KC is a connected component consisting of k disks, then exactly k eigenvalues are inside K.
Now, write A= D+ F, where D is the diagonal and F is the off-diagonal. Consider the curve
D+ sF. Then as s goes from 0 to 1, the Gershgorin discs grow from 0 radius to discs of radii given

by off-diagonal absolute row-sums of A. This is a nice illustration for how the eigenvalues change
as s varies.

Suppose we have A = VAV 1 = VAW*, where W* =V ~!. Let A= A+ E. The eigenvalues of A
lie in Gershgorin discs of
VIAV = W*AV = A+ W*EV

Thus, we can bound the difference in the eigenvalues of A by looking at the row sums of this matrix.
A naive control on the eigenvalues of A is given by [|[W*EV||_ < k(V)||E||,,, so we know that

A(A) € | Buvyml (M(l‘U)
i=1
A more refined analysis (as in the notes) gives a nicer bound
A(A) € | Busecton)ial, ()\i(A))
i=1

where 6; is the acute angle between the left and right eigenvectors for ;.

Lecture 23: Power iterations (10/25)

Let A € C™*", with eigenvalues labeled so that |A\1| >|A2| > ... >|A,|. The eigen equations are
Ax; = \jz;. We also suppose that A= VAV ™! is diagonalizable.

A naive method of computing eigenvalues is to find roots of the characteristic polynomial det(A —
aI). This is not a good method for actually computing the eigenvalues. The solutions to a high
degree polynomial may change a lot with small perturbations to the coefficients.

42

Power method

We use that A¥ = VAV =1 or AFV =V A*. Take x = VZ. Then we have

If we suppose that |A1| is strictly greater than the magnitudes of the other eigenvalues, then the
only summand that is not killed is at j = 1. Thus, we consider the following power iteration

L)) _ Az Akg0)
" [ant] e

Then under our assumptions, the iterates converge to the dominant eigenvector. Note that the
convergence is linear, depending on the ratio ﬁ—f To obtain A1, we then just apply Az(™ ~ \jz;.
There are some issues with using this approach exactly:

1. We do not find Ajv; for j #1

9. What if 22l ~ 17
[A1]

3. What if £; =07
This is not too terrible of an issue, since for one a random choice of vector in R™ almost surely

has nonzero first component. Also, rounding issues on a computer could make the component
nonzero and accidentally resolve this.

Choose f(z) = ~1=. Then we have (A—oI)~! = f(A) =V (A—oI) 'V 1. Then the eigenvalues of

—c"

f(A) are 1. Thus, the maximal eigenvalue of f(A) is -1 where); is the eigenvalue closest in
J J
0. Again, convergence is linear. We now consider a way to speed up the convergence.

Say we have run some iterations of the power method, and have an iterate ¥ that is close to an
eigenvector of A. Then we have A0 — Ao~ 0. Applying 97 on both sides of Av—\v =0, we get

>

T Av - oTv=0
so that
T AD

T v

~
~
~

Thus, at each step of our shift and invert iteration, we choose our shift to be the Rayleigh quotient

(ﬁZT‘?jﬁ), an approximation of the algorithm. With this Rayleigh quotient iteration, we now have

quadratic convergence.

Subspace iteration

We can in some sense extend the power method by applying A to a subspace. Vi, = A*V). Directly
applying A to a set of vectors V just makes all iterates converge to the dominant eigenvector, so
we have to make some adjustments.

Say we have an orthogonal set of p vectors), € C"*", and compute an economy ()R decomposition
AQk = Q1 Rk41
k+1) (k+1 k
O — ag?

(k)

As long as |Ay| > |A\p11], we have convergence of the iterates q; = to eigenvectors.

Lecture 24: QR Method (10/28)

Consider the shift-invert iteration, and suppose o is close to an eigenvalue. We have the iterate
v+ o (A— o)~ 'v®). Note that A—oT is ill-conditioned. However, it turns out that the error
in the solve mostly ”points in the direction of the eigenvector” so it is not terrible.

Now, we discuss subspace iteration more in depth. The iterates are
Vk+1 —_ Avk Qk‘-i-le’-i-l —_ AQk’
Consider the first column

k+1 k+1 _ 4 k
" = Ag

Thus, the first column of the Q¥ are following a power iteration. The first two columns of @ are
following a two dimensional subspace iteration, and so on.

Now, say we have iterates Q¥ T RFt! = AQ*, where this is the full QR factorization, so Q € R"*".
If the eigenvalues have distinct magnitudes, then Q¥ — @, the orthogonal factor in the Schur form
AQ = QT. Moreover, we have that RF — T.

There are some issues with this iteration:

e We want to focus on eigenvalues, not eigenvectors, so we want to focus on the triangular
factor T

e The cost per iteration is O(n3)

e [t may converge slowly, depending on the difference of the magnitudes of the eigenvalues

We attempt to solve some of these problems. Our iteration is of the form (starting with Q¥ = 1T)

QIRI —A

Q2R2 — AQl
Q2R2R1 — AQlRl — A2

Q3R3 — AQ2

Q3R3R2R1:AQ2R2R1:A3

44

Note that this means at step k, we are implicity computing a QR factorization of A*.

Q(k+1)R(k+1) _ AQk
Q(k+1)R(k+l) . R(l) — Ak+l

say we are trying to extract a good possible estimate of T. We select the estimate
Alk) — (Q(k))*AQ(k)
AB) — (QW)y= QU1 RU+)
— QUkH1) gUk+1)
A1) — (U1 yx gQU+D)
(Q(k))*A(k’)Q(k)

Thus, our equivalent iteration is

A+ Z g0 Ak)

Note that the steps are still O(n?). To resolve this, we transform A into a nicer matrix to work with,
by using similarity transforms so that the eigenvalues are preserved. In particular, we use unitary
similarities. Applying Householder transforms on both sides can bring A to upper Hessenberg
form (note that we cannot expect transformations that bring us directly to a Schur form, due to
Abel-Ruffini).

Considering the iteration on a Hessenberg matrix,
H® = QUk+1) glk+D)
HED) = R(k+1)Q(k+1) is still Hessenberg!

Going through the steps of Householder QR on H®)_ the Householder transforms are just Givens

rotations on the subdiagonal. Then, right multiplying R**1 by Q*+1) just applies the Givens

rotations to the columns, which only affects the nonzero structure of the subdiagonal of R(*+1)

thus guaranteeing the upper Hessenberg structure of H*+1). Note also that the Givens rotations
only take O(n?) time per iteration!

Lecture 25: Practical QR Method (10/30)

The first column of an upper triangular matrix is special since it only contains one nonzero. Like-
wise, the last row contains only one nonzero. Note that in the QR iteration, we have

AF = Q(’C)R(k)
Ak — ([{(k))—lQ(k)T
eTA—k‘ _ (Rk)—l eTQ(k)T
n nn n

a scalar

45

Thus, the last column of the iterates Q) follow an inverse iteration. Recall that the first columns
follow a power iteration. This motivates the shifted QR iteration.

QW RW® = FE) _ 5
HED = pWQF) 4 61
To check that this is an equivalent iteration, note that
HE) = REQE) 4 o1
=QWT(H® —61)QW + 61
— Q(k)TH(k)Q(k)

This accelerates the convergence, if we choose good shifts. The simplest choice of shift is A%’i?, which
is equivalent to a Rayleigh quotient iteration in some sense. This is known as the Wilkinson shift.
During the iteration, the subdiagonal element of the last row approaches zero, so when it becomes
smaller than some tolerance, we can take the bottom right entry as an eigenvalue, then deflate and
continue the algorithm on the smaller submatrix.

Note that for a real A € R"*™ all elements in the iterates are real, and thus we can never truly
converge to an eigenvalue A € C\ R. However, all complex eigenvalues of real matrices do come in
conjugate pairs. We can choose a complex shift to help resolve this.

To converge to an eigenvalue near o, we iterate with (A —ol)~!. An iteration can converge to a
2 dimensional subspace associated with a conjugate pair A, A of maximum modulus. Consider the
mapping
1
(:=0)(z—70)
B 1
22— 2R(0)z+|o)?

Z =

Thus, we iterate with (A2 —2R(0)A+|o|*I)~!. This is known as the Francis double-shift strat-
egy. This can be done purely with real arithmetic.

Let U € R™*2? be an orthonormal basis for the eigenspace associated with a conjugate pair of
eigenvalues. Consider the matrix

UT AU = lo‘ 5}

v 4

We want to choose shifts as eigenvalues of UT AU. Note that we can just use the characteristic
polynomial 22 — (a+)z + (ad — 37).

Note that our new iterating matrix uses A2. This is not still upper Hessenberg, but has just one
more subdiagonal of nonzeros. We have to use another trick to resolve this.

First, note that there are many Hessenberg matrices H orthogonally similar to a given matrix A.
The implicit Q theorem says that the orthogonal @ such that QT AQ = H is entirely determined
by its first column. This means that the first column can be taken arbitrarily (of unit norm), and
then the rest of the columns are determined.

The bulge chasing strategy applies transformation that eliminates starting from the left-most
column, which may introduce zeros in columns to the right, but which are iteratively eliminated in
later steps.

46

Lecture 26: Symmetric Eigenproblem Theory (11/1)

We first recall some useful facts for the homework. For z = A~ b,

Sx=—A"15AA b+ A6
=—A15Az+ A6

There is a standard mapping C — R?*2 given by

atBi= e s la —ﬂ] :plCOSQ —sinG]

08 « sinf cos#

Symmetric Eigenvalue Problem

The symmetric eigenvalue problem (SEP) is

A e R A=AT
Az =z

The Hermitian eigenvalue problem (HEP) is defined similarly

AcC" A= A"
Ax = \x

There are some nice properties of the hermitian eigenvalue problem that do not hold in general:

e Eigenvalues are all real
e Complete basis of orthonormal eigenvectors

e All eigenvalues have maximal geometric multiplicity

The decomposition A =UAU* is both a Jordan and Schur form. Note also that A= U(AS)(SU™),
where S = diag(s(A1),...,5(A\)), where s(a) is the sign of a for a € R.

Recall that the Rayleigh quotient for v # 0 is
v* Av

v*v

p(A,v) =

Let us minimize or maximize a Rayleigh quotient. We differentiate

v* Av d(v*Av)(v*v) — (v* Av)d(vFv
5(): (v* Av)((1)}*7);2)8(v"v)
B ov* <2Av(v*v) - (v*Av)Qv)

N (v*v)?

(Av - p(A,v)v)

v*vU

200"

- 2
[o]]

47

Thus, stationary points of the Rayleigh quotient are points where Av = p(A,v)v, meaning points
where v is an eigenvector with corresponding eigenvalue p(A,v).

Thus, we consider the constrained optimization min /maxv” Av s.t.|[v]|* = 1.
L(v,A) =0T Av = \(Jv]|* = 1)
6L = 26T (Av—) —A(|v)* = 1)
Thus, the Lagrange multiplier is the eigenvalue.
Now, consider another constraint
min /maxv’ Av s.t.||v]]3, =1
Then we can solve

L(v,\) = %UTA’U - %(UTMU -1)

oA
6L = ovl (Av— A\Mv) — ?(UTM’U -1)
Thus, we now have a (symmetric) generalized eigenvalue problem. If M = RTR, then v" Mv =
vTRT Rv =||Rv||>. Letting w = Rv, we have v = R~'w. Thus, this problem is equivalent to
min /maxw! R-TAR'w s.t.||jw|® =1

So we can convert a symmetric generalized eigenvalue problem to a standard symmetric eigenvalue
problem. We do not always do this in practice.

Now, note that if A=UAU* is an eigendecomposition,
v*Av = v UAU v
= (U*v)*"A(U*v)
H_/_/
|4

n
— 52
= Z)‘J”m
Jj=1

Recall that similarity preserves eigenvalues. The natural set of transformations for quadratic forms
is congruence, which is of the form A+— X*AX, X € GL,,. General congruence preserves the
inertia of A, meaning the respective counts of positive, zero, and negative eigenvalues.

Now, if A=UXV™, then

A*A=VX2y*
AA* =UXU*
Consider the matrix
0 Allu| |Av| |u
A 0| ol T A% T % v

For a singular value/ vector triple (o,u,v). This shows that the SVD can be computed by way of
SEP.

Now, say we are using a shift-invert iteration on a symmetric matrix. Then we has as shift
p(A,v+eu) = p(A,0) + O(e2)

In the nonsymmetric case, the shift is O(e) close. Thus, the symmetric structure significantly
benefits the convergence of the iteration.

48

Lecture 27: Symmetric Eigenproblem Theory Cont. (11/4)

Theorem 3 (Courant-Fisher Minimax Theorem). Let A = AT € R™ "™ with eigenvalues Ay > ... >
An. Then
v Av
AL = max min 7
Vidim V=k veV\{0} vTv

. vT Aw
= min max T
VidimV=n—k+1 veV\{0} V-V

Sketch of proof. Let A= QAQ". Then

|
[SH]

Il
Q
<

n
:Z)\jw]' ij:17 w; >0

k=1 J

Thus, the Rayleigh quotient is a weighted average over the eigenvalues. We can change what the
weights are. Now, for \p, a maximal choice of subspace is one which is spanned by the first k
eigenvectors. The minimal Rayleigh quotient out of all vectors of this subspace is equal to the
smallest eigenvalue in this subspace, Ag. O

An application of Courant-Fisher is the Cauchy interlace theorem

Theorem 4. Let A be a symmetric matriz, with blocks

e [An a121

a1 a2
Suppose \1 > ... > N\, are eigenvalues of A and 5\1 >...> S\n,l are eigenvalues of A11. Then

MM > 0> > 0 > 1> A1 >\,

Sketch of proof.

AL = ma min Av

k dimv)ik vEV;é{O}p()

e = i A,

F S o P4
Up=

So A; > A, due to the extra constraint in the max of \;. Use the other direction equality in
Courant-Fisher to get A\ > Api1. O

49

Oftentimes roots of orthogonal polynomials can be characterized as eigenproblems for nested ma-

trices, so this theorem can be applied to show that there is interlacing of some sort.

Now, we consider perturbation results, which are much nicer than those applying to the general

eigenproblem. The Weyl bound is:
[Ak(A+E) = A(A)] <1 E]l

This is because

vI'Av T Ewv

A+E v) = R
pA+Ev) = —7 =+
vT Avw
< M(E
= Ty +‘ 1()’
_UTAU
2 B,

The Weilandt-Hoffman theorem states:

3 (A + B) - () <I|BIZ
k

Note that this measures the total difference between the eigenvalues of A+ E and A while the Weyl

bound measures the eigenvalue by eigenvalue difference.

Now, say that we have an approximate eigenvalue ¥ with
Ab =X +r
Then it holds that

(A+E)o =0\ E=ro"+0r"

Meaning that there is a symmetric perturbation that scales in size with the size of the residual for

which we have an exact eigenvector to a perturbed problem.

Now, we present the Davis-Kahan sinf theorem.

Theorem 5. Let AU = UA, where U € R™* and A € R¥*k. This means that U spans a k-

dimensional invariant subspace of A. Say also AU = UA. Define a residual AU —UA. Then

1Bl
5

‘@anhUng

where § is the gap between A and the rest of the eigenvalues.

The sin and angle is defined in terms of a CS decomposition. Let Q) = [Ql Qg} orthogonal.

50

want Q = {Ql Qg} We decompose

~ U C =S|V
L |
_00501
C =
I cos 0y,
_sin91
S =
I sin

This decomposes QITQQ =UXVT, where oj = cosfj, called the jth canonical angle.

This theorem means that if A has a large gap in its eigenvalues, then regardless of any change in
the eigenvectors, the span of a eigenspace of the perturbed matrix is not much different from the
corresponding span of that of A.

Lecture 28: Symmetric Eigenproblem Algorithms (11/6)

First, suppose we reduce A = AT = QHQ" where H is upper Hessenberg. Since A is symmetric,
this means that QHQT = A= AT = QHTQ", meaning that H = H”, so that H is in fact symmetric
tridiagonal. Thus, we denote H =T. Let aq,...,a, be the diagonal elements, and f31,...,3,_1 be
the subdiagonal elements.

Note that the QR algorithm preserves tridiagonality in the iterates by using orthogonal similarities.
Moreover, we can apply bulge-chasing to compute QR decompositions of a banded matrix, using
Given’s rotations. This costs O(n) time as opposed to O(n?) time per iteration in the nonsymmetric
case. Thus, the total cost per iteration of symmetric QR is O(n). Moreover, we can shift with the
Wilkinson shift (Rayleigh quotient iteration on last column) since all eigenvalues are real.

We consider the form of the Rayleigh quotient iteration in the symmetric case. Let v, bet the
initial guess, with error O(e). Then

o= p(A4,v,)
=A+0(e?)
Thus, plugging in this shift, we get a new estimate
v, = (A—al) tu,
= Vruth + O(€°)
Indeed, the Rayleigh quotient iteration converges insanely quickly in the symmetric case.

The total cost for symmetric QR algorithms is O(n) steps (due to this fast convergence), O(n) cost
per step, and thus O(n?) overall cost, once we have a tridiagonal matrix. However, tridiagonalizing
the matrix still takes O(n?) time.

Lastly, we note that the symmetric QR can be used to compute an SVD. The exact method is a
bit more complicated.

51

Jacobi iteration

A Jacobi rotation is like a Given’s rotation but applied to both sides of a matrix.

JTAT=A all in R®*?

The Jacobi iteration is of the form:

Apr A
Ay Ay

e Pass through all off diagonals and apply Jacobi rotation to l

— O(1) to compute J and O(n) to apply across all of A

When a Jacobi rotation is applied, previous off diagonals may be reintroduced, but they will be of
lower magnitude. This is much easier to parallelize than the QR algorithm.

Divide and conquer

Consider the tridiagonal eigenproblem. Say we only want some subset of the eigenvalues. If we
have a good estimate o ~ A1, then Rayleigh quotient iteration converges cubically with O(n) cost
per iteration. The key idea is the linear solve with A —ol. If this were spd, then we could use
Cholesky. If not, then we can compute an LDL” factorization.

P(A-—ol)'PT =LDL”

Note that A—ol and D are congruent. Thus, they have the same inertia, meaning that the number
of positive, zero, or negative d;; are preserved. Thus, we have the number of eigenvalues of A that
are > o, number that are = ¢, and number that are < o.

Thus, the bisection idea is to get sufficient information to get a set of intervals containing eigenval-
ues. Once the intervals are small enough, we have good eigenvalue estimates, and can run Rayleigh
quotient iterations to converge more closely. Moreover, we can use the interlacing theorem to get
further information in some way.

The so-called Grail code has optimal complexity for computing eigenvectors once given the eigen-
values. To compute k eigenvectors, which contain O(nk) data, it takes O(nk) time.

Lecture 29: (11/8)

We review the connection between the second derivative test for Lagrange multipliers and the
symmetric eigenvalue problem. Consider an optimization problem with equality constraints,

minp(z) s.t. g(z)=0
in which ¢ : R7”R and ¢: R" — R*, k <n. We form

L(z,\) = ¢(z) + A" g()

52

Then differentiating with respect to x,
5L = [¢'(z) + X g/ (2)]6x+ AT g(x)

At a constrained stationary point where d L(x*,*) = 0, we look at directions consistent with g(z) =
0.

g(z +ev) = O(e?)

ie. ¢(@")v=0
——
€ Rkxn

Then for a constrained minimum, we need
v L (z*)v>=0, v#0
st. g (x*)v=0

For example, consider the problem

Then we compute

L(z,p) = 2T Az — p(zTz — 1)
6L = 2627 (Ax — px) — op” (2T — 1)
Our second derivative test is

v (A=plv >0 st. 2Tv=0

Sylvester’s equation

Now, moving on, consider Sylvester’s equation
AX+XB=C
Ac Rnxn Xe Rnxk Be kak C e Rnxk

We can rewrite this as a linear system using Kronecker products and vec, which takes a matrix and
lays it out in stacking columns vertically. Note that

vec(AX) = vec([Aa:l, e ,A:L‘n})

Al’l

_Axn

_A X

I Al |z,
= (I® A)vec(X)

93

thus, Sylvester’s equation is
(I® A+ BT @ Ivec(X) = vec(C)

Of course, this is a massive system takes O((nk)?) time to solve

We find that a discretization for computing Laplacians also takes this form

+h,y) —2f(z,y) + flz—h, y+h) —2f(,y)+ f(z,y—h
V2 (o y) ~ LEEY) f2(}abr2y) fla=hy) flz.y+h) fQ(Z"Qy) flz,y—h)

say we have a grid of function evaluations, where U;; = u(x;,y;). Then we have the approximation

(V) = %(I@T—I—T@I)Vec(U)
Y 4 -
-1 2 -1
T= -
-1 2 -1
-1 2

Now, note that if A = diag(ay,...,a,) and B = diag(f1,...,5n), then the solution to Sylvester’s

equation is X;; = ac%ﬁ Thus, we would like to reduce matrices to diagonal form. Say that A and
TP

B are symmetric and we have eigendecompositions A = Q4A4Q% and B = QpApQ%. Then our
equation is

QaMQLX +XQpApQL =C
AQLXQp+QLXQpAr=Q4CQE
AAX —I-XAB =C

then the time to solve Sylvester’s equation is simply the cost of the eigendecompositions O(n?),
where we assume n > k.

If A or B are not symmetric, we can use a similar method with the Schur forms A =U,T1U’ and
B =UpgTgUj. Then Sylvester’s equation is

TyX +XTp=C

Note that T4 and T are triangular, not diagonal. The Bartels-Stewart algorithm can solve this
system. We look at each column one by one

First column: TaZ1 +21(TB)11 = Cy
(Ta+ (Tp)11)31 = Ch

Note that this is a triangular system, so we can solve it in O(n?) time. The other columns are
similar, so this takes O(n3) time total.

Riccati equations

Sylvester’s equation is a linear equation of matrices. Riccati’s is a quadratic matrix equation

ATX+XA-XBR'BTX+Q=0

o4

This is equivalent to

So [)I{] is a null space basis.

Lecture 30: Iterative Methods and Model Problems (11/13)

(Monday was Veteran’s day).

We are moving on to iterative methods for linear systems and iterative methods for eigenproblems.
Here, sparsity (meaning data sparsity) is very important. The actual nonzero structure of the
matrices are important; the methods generally do not work well with general sparse matrices.
Thus, we consider performance on model problems. One important model problem that we will
consider is the second-order finite difference discretization of Poisson’s equation. This takes the
form

d2
—o5=f on (1), u(0)=u(1)=0
we take a mesh xg,...,2ny where x; = jh so that the steps are h =1/N. We wish to approximate

uj R u(x;). Denote f; = f(z;). Taylor expansion gives

w(@+h) = u(z) + ' ()h + %u”(x)fﬂ + éu"’(:p)h?’ +O(h)
w(z—h) = u(z) — () + %u"(az)hQ _ %u”’(m)hg —o(h

u(z+h) +u(z —h) = 2u(z) +u" (x)h? + O(h?)
so that our approximation is

so we have the equations

- —Uj_1+2Uj —uj1 .
—uj & 2 =f j=1,....,.N—1

—Uj—1+ 2u]' —Ujt1 = thj

95

which is the linear system

(2 -1 11 w] A
—1 2 -1 Uug f2
: — K2 :

-1 2 =1 |uy_s In_2

I -1 2] [un-1 _fN—l_

we denote a matrix of this tridiagonal structure of size N x N by Th.

We consider an associated eigenproblem (T'— AI)y = 0. The row-wise equation is
i1+ (2= N =i =0
so we consider the characteristic equation
22—(2-XN)z+1=0

we get two conjugate roots &, & with [€] =1 when A € [0,4]. The solution is then of the form
Y =afl + B€’, which we can solve as Gcos(j6) + ﬁsin(jﬁ) using the polar decomposition of £. We
can use the boundary conditions to get the exact eigensolutions.

2
eigenvectors z;(k) =4/ T sin ((]W)xk)

eigenvalues \; = 2(1 — Ccos (n?—? 1))

If we consider j < n, then Taylor expansion gives

so that we have

Now, we consider the 2D model problem, which is of the form
—V2u = —(Opgu+ Oyyu) = f (z,y) € (0,1)?

u(z,y) =0 for|z|=1or|yl=1
Then we want approximations
Uij = u(zi,y;)
Discretizing gives a Sylvester equation
TU+UT = h*F
(T@I4+I@T)vec(U) = h?vec(F)

96

which is still a matrix equation of dimension N = n?

equation:

. However, the 3D equation is not a matrix

(TRIQI+IRTRI+IRIRT)vec(U) = h*vec(F)

The nonzero pattern of T« n, the matrix for the 2D equation, is block tridiagonal, with the diago-
nal blocks having tridiagonal structure and the sub/super-diagonal blocks have diagonal structure.

We have various direct methods to solve with Ty« n:
e Dense Cholesky O(N?3)
This is the slow, naive method.
e Banded Cholesky O(N?%)

e Nested dissection O(N9)
This is a pretty good method, and can make good use of caches.

The above methods all use the nonzero structure.

e Sylvester solver O(N'5) factorization and O(N) solves.

This makes use of the Kronecker product structure.

e Discrete sine transforms O(/Nlog N)

There are also iterative methods (listed are amount of work to decrease error by a constant factor)

e Jacobi O(N?)
Gauss-Seidel O(N?)

Conjugate Gradients O(N3/2)

SOR O(N3/2)

SSOR with Chebyshev acceleration O(N°/4)

Multigrid O(N)

Lecture 31: Iterative Methods (11/15)

Our goal is to solve Az = b by iteration, in which we produce xg,z1,... that converge to 2* = A~1b.
Today we will be consider stationary methods / fixed point iterations. For these, we have a function
F so that «* = F'(z*). Then we consider an iteration xy41 = F(zx). We analyze this by considering

Tpr1— " i=epy1 = F(a™+ep) — F(z*)
We desire contractivity, meaning

lerall < afler]

for some a € (0,1).

o7

For a matrix A, we take a splitting A = M — K, in which M is easy for solves. Then we have

Axr=5>
(M—K)x=5b
Mx=Kzx-+b

=M YKz +0)
Then we have
o Truth: Ma* = Kz*+0b

e Tteration: MzFtl = KzF +b

Taking differences, the error iteration is

MeFt! = KeF
eftl = (M_lK)ek
R

Thus, p(R) < 1 is necessary and sufficient for convergence. Since p(R) is bounded from above by
|R|| for any operator norm, a sufficient condition is that ||R| < 1. Suppose we do have a bound
|R|| < p<1. Then we have

=] =] "]
<olle’|
<]

Thus, to reduce the error by a constant factor C' < 1,

|
< b <
€]
klogp <log(C)
log(C)
k>
~ log(p)

Now, we consider specific splittings. Consider a splitting A = D — L — U, where D is diagonal, —U
is upper trianglar, and —L is lower triangular. Then we have three classic iterations

e Richardson: M = al
e Jacobi: M =D
o Gauss-Seidel: M =D — L
For the Richardson iteration, the fixed point equation is
ale=(al —A)z+b

x=(I—-wA)x+wb w=
R

Ol

o8

In the SPD case, say we have 0 < A\; <... < \,. For convergence, it is necessary that

1—wi,(4) > -1
2—wA,(A) >0

w <

2
An(A)
The optimal w has

1-n=1-wh(4)

—1+n=1-wl,(4)
2
AL(A) +An(4)

*

—— W =

Because we have that

p(l—w*A) =1—w*A\ —|2—w*\,|
21 _)\1+)\n 21
S A M A A
o An— A1
EPYEDY
_ K(A)—1
k(A +1

Recall that for our model problem, a row of our equation Ty yu = h2f is
2
—Ui—1,j — Wit1,j — Ui j—1 — Ui j41 + 45 = h” fij

Note that the Jacobi and Richardson iterations are essentially the same, since the diagonal of Ty« n
is the constant 4. The Jacobi iteration updates by assuming that the neighbors in the previous
step are exactly correct

k1) 1, (& k k k
Uz('j = Z(uz(—)l,j +“z('+)1,j +U§,j)—1 +“§,j)+1+h2fij)

Gauss-Seidel updates by assuming that the most recently updated neighbors are correct

1 m T 108
uz(fﬂ) = Z(uz(—ffjt) B2 f)

We end with consideration of convergence rates. For Jacobi we have
Tpp1 = DTH((L+U)zy+)
R=DYL+U)

Note that ||R||,, <1 if and only if A is strictly diagonally dominant. This is because each row
sum of R is the sum of the off diagonals of that row divided by the diagonal element. Thus, strict
diagonal dominance of A is sufficient for convergence of Jacobi.

Note that our model problem Ty nu = h?f is equivalent to

1
min §uTTN><Nu — h2qu

)

99

This is because this optimization problem has a convex objective, so it achieves its minimum at
the only stationary point, which occurs exactly when Ty yu = h?f as seen by differentiating.

Thus, we can also consider solving the model problem with optimization strategies. For instance,
we can consider coordinate descent on ¢ : R”™ — R. This takes the form of iterating

Gj = argmin,, ¢(u —e;juj + ze;)

It can be shown that Gauss-Seidel has the exact same steps as this. This is enough to show that
Gauss-Seidel does not blow up. Not too many more arguments give convergence as well.

Lecture 32: Approximation from subspaces (11/18)

(Missed this lecture)

In estimating a solution to the linear system Ax = b by an approximate solution Z in a subspace
V, there are several possible approaches:

e Least squares: Solve mingey||AZ — b3, for some M.
e Optimization: If A is spd, solve mingecy ¢(x) = %:ETAI' —2Tb over

e Galerkin: Choose Az —0b L W for a test space W. For Bubnov-Galerkin methods, W =V. If
the test space is different than the approximation space, then the method is a Petrov-Galerkin
method.

Lecture 33: Krylov subspaces (11/20)

We look at our iterative methods

Mz = Kap+b
Mx, =Kxp_1+b

Mdy, 1 = Kdy, dy = T — Tp—1
dit1 = M_lek
R

Note that we have

rp=x0+d1+...+dg

Z.I‘o—l—dl—i-Rdl—i-...—i-del
k
=z0+ »_ Rld
k=0
=zo+(I—-RTHY(I-R)d,

Note that this is a power iteration. If R = VAV ™!, then
dy = R*d;
dp = A*d,

60

If A=VAV~!is diagonalizable, then A=' = VA~'V =L If we find an interpolating polynomial p(z)
such that p();) = /\%‘, then p(A) = A=, Thus, instead of using the basic polynomial Z?:o R; in
our iteration, we can consider using different polynomials that may allow quicker convergence.

Consider the iteration z*+! = Rz* 4-b, where R is spd with p(R) < 1. Then we have
W = Ra®+b
2® =R%%+ Rb+b
2 = R*2%+ R®b+ Rb+b

if we set z(0) = 0, then

k—1
e®=SN"RibE (1-R)"
j=0

Now, suppose we have more information, that the spectrum is contained in an interval o(R) C [, 5],
0<a< fB<1. We wish to find a polynomial p(z) so that p(A)b~ A~1b, meaning

Ap(a)b—b=[Ap(A) —1I]b is small

We call ¢(z) =1— zp(z), the negation of the polynomial that appears. Note ¢(0) =1, and we
want ¢(\;) as small as possible. We can apply the equioscillation theorem, and will later discuss
Chebyshev polynomial methods that work for us.

We define the kth Krylov subspace
K1(A,b) = span(b, Ab, ..., A*~1b)
={p(A)b:p € Cyx_1[z]}

The key ideas going forward are:

e Use Krylov subspaces as approximation spaces

e Use Galerkin/optimization to choose good solutions from the spaces

The best possible residual involves minimizing ¢(z) on the spectrum, note that

_ det(zf —A)

q(z) = det (—4) gives 0 residual

Now, we go back to the spd case, and ask what can we say if we only know the eigenvalues are
contained in [a, 3].
We will make use of the Chebyshev polynomials, defined as
To(x)=1
Ti(z)=x
Tpv1(2) = 22Tk () — Tpp—1 ()

This is a constant coefficient recurrence, we have
Ti,(x) = aéf + 5&

61

where &1,&2 are the roots of 22 —2zz+ 1. For z between [—1,1], Tj(z) oscillates and is given by
Ty (x) = cos(karccos(z)). Outside of [~1,1], we have Tj(z) = cosh(kcosh™!(z)), which blows up
quickly. We have a bound

1
Tn(1+e) > 5(1 +my/2e¢)
This is connected to the condition number. On [a, 3], we have

2
m < - =
lgm] < 1+m/2e
e=2(rk(A)—1)""

2m 2

|oml §2(1_'€(A)—1)+0(”(Z;—1)

If the spectrum is not uniformly spread about [, 3], then we would want unequal oscillations about
the interval.

Lecture 34: Krylov subspaces (11/22)
We consider the Ky (A,b) = span(b, Ab,..., A*"1b) = {p(A)b | p € Cr_1[x]}. Observe that

e If p(z) is the minimal polynomial of A, p(z) =[[;(z —A;), so p(4) =0, and is of minimal
degree, then Kgegp(A,b) is the same as the Krylov subspace for any higher degree. In general,
if ¢ is a polynomial such that g(A)b =0, then we can use Krylov subspaces of degree up to

degp.
Thus, if we can find a polynomial such that ¢(A) kills b, we can bound the largest Krylov subspace
we need consider.

Today, we will consider orthonormal bases for Krylov subspaces and projections of A onto these
bases.

Let us take a generic A € R™*". We want an orthonormal basis with span{qo,...,qx—1} = Kr(A4,d).
Our process is

b
q0 = 77
[o]]
§1 = Ago — qo(qt Aqo)
q1
q1 = 7=7
G|

J
Gj+1=Aq; =Y _ai(q] Agj)
i=0

62

We write this as

J
Gjr1=Aq;— > _hij
i=0

_ Gin1
T g
J+1,3

so we have
j
hjt15q5+1+ Z%’hij = Agj
i=0
Jj+1
> qihij = Ag;
i=0

Writing this in matrix form,

hoo ho1 ho2
A[QO q1 ---}Z{CJO q1 } o Zi Z;i

When we have computed the full Krylov subspace, then we have an incrementally computed
Hessenberg decomposition AQ = QH. The iterates in between are the Arnoldi decompositions

AQW) = Q(kﬂ)ﬁ(k), where
=m0

and H € RETDXE i5 ypper Hessenberg with an extra row. This iteration is the Arnoldi algorithm.

The classical Gram-Schmidt orthogonalization step is

w = AQj
. T
Gj+1=w— ZQZ‘(% w)
i=0

on the other hand, modified Gram-Schmidt uses that (I — ZZZO qql) = gzO(I —qiql) due to
orthogonality, so the iteration is

° w<—qu

e Fort=0,...,)
w > w—q;(qf w)

If A is symmetric, then the iteration computes
AQW = QWHIT = QWTW 4 iy 1gref,

where f1,...,8,—1 are the subdiagonal entries of T'. This is known as the Lanczos iteration .

63

Now we expand to try to make an iteration. Reading off one column of the equation is
(AQ)x, = Ag;
= (QT);
= Bj—14j—1+ ;jq; + Bqi+1
Bitj+1 = (A—a;l)q; — Bj-1qj—1

Conjugate Gradients

Let A by symmetric. Consider the problem

1
min—z7 Az —2Tb

over a Krylov space.
AQW = QWT® 4 Brgpprel
& =AQWy
QWPTAQW)y = TH)y
solve T(k)y =QWTy
2=QWy
If we have A generally nonsymmetric, and we want to solve
min||Ax — b||

over # = Q®y, then

—(k
Ay~ b es

min

ﬁ(k)y _ Q(k+1)bH — min

gives the GMRES method.

Lecture 35: Conjugate Gradients (11/25)

Let A be Spd. We will form a I(I'YIOV subspace K and minimize the objective
. 1 T T
= = A -
In}éll QO(.T) 2.1? r—x'b

over the Krylov subspace. First we will look at some properties of this problem

1
P(z) = 5””\3‘—1
- % ((Ax—b)7A7 (Ax b))
_ % (o7 Az~ 27b+ 5" A 1bA (Az b))
1
= ¢($)+§Hb”,244

64

since the second summand does not depend on z, minimizing ¢ is equivalent to minimizing (.

There is another way to think about this

e(r)y=x—2a"

r(x)=Ax—b
= Az — Ax*
= Ae

Thus, at the solution, the error e is orthogonal to the residual 7.

Now, consider

A

L2
o) = el
1 12
= Le—at?
1 *\T *
:§($_x) Az — ™)
L r T L 7
=—u' Arv—x, Av+ —x, Ax,
2 2
1
= ia:TA:c—be—FHx*Hi
= ¢(x)

So we have three perspectives for looking at the method of conjugate gradients. Now, recall the

Lanczos iteration

QWT AQ®) = 7k
Consider Bubnov-Galerkin with z*) = Q(®)y(*) The problem is of the form

min o(QWy™)
(k)

Note that
QWb =|lb] er = (|b]],0,...,0)
Note the problems T®)y(¥) are nested linear systems. This is because T Dy (k+1 ig of the form

(k)

Br Qkt1
We use LU decompositions of the iterates T+ = L+ r(k+1),

k1
L) 0 U (k+1)
0 I 1

0
]
S

65

Then our intermediate iterates are

y® = QUWITM] bl e)1
= (ol (@™~ L") ey)

Vv (k) 2(k)
1
h 1
L= 1, 1
Ul U2
U u22 U23
- U3z U34
Where z(®) can be computed simply
Lz =||b||ex
21 =|ol]
liz1—29=0 = 2o =—-l171
Zht1 = —lk 2k

and V*) can also be computed
ViUl = q = v1=q1/un
ViUl +v2u22 = @2 = U2 = (g2 — v1u12)/U22
This means that the iterates can be simply updated
k1) _ 7 (k+1) , (k+1) _ (k)

a T Vk+12k+1

Lecture 36: CG and Beyond (12/4)

We continue with conjugate gradients. Consider ¢(z) = %:UTAJU —2Tb. Also, we consider an opti-

mization framework
kD) — (k) | akp(k)

where p®) should be a descent direction, so p(k)TVgp < 0, but not too close to zero. Here, we
have Vo = Ax — b, which happens to be the residual. One way to choose a descent direction is by
gradient descent, with p*) = —V¢. This is of the form

®) = 2 ®) oy (b— Az®)

For ap = « fixed, this is the Richardson iteration. This does not work well if A is ill-conditioned.
There are methods to choose aj in a better way; we will consider changing pg. There are two ways:

66

1. Scaling/ preconditioning z**1) = z®) + o, M~(b— Az*)

There are several preconditioning methods derived from stationary methods.

2. Look at previous steps. This is what conjugate gradients does.

Consider the iteration

2®) = 20D 4 appy 4

and choose pi_1 € Ki(A,b) such that

Pr—1 LaKp-1(A,0)

ie. pi_1Av=0 Yov€Kp_ 1(A,D)
Then compute an optimal step length ay.

2 = p=1) g (k=)
P 8) — pb=1) _ g (k=1)

since 7 1 (=1 we can then solve

T
a = Tk—1Tk—1
-, T
Pi_1APk—1

Beyond CG

Sadly, not all matrices are symmetric positive definite. For a general problem, we have idea 0:
1 1
min || Az — bl = §xTATA:c—mTATb+||bH2

Thus, one possibility is CG on normal equations (CGNE). This is not used terribly often, since
AT A can be quite ill-conditioned. A more commonly used method, which we call idea 1, is within
MINRES (symmetric) and GMRES (nonsymmetric). GMRES starts from the form

And solves the problem is

min AQ(k)y —b
Y SN——
(k)
2
Y b er

= min
Yy

We solve this and form the iterate 2(*). The issue is that we have to save the Krylov basis. Thus,
in practice, GMRES(k) is often used:

e While not converged

67

—r=b—Az
— Approximate AAz =r with (up to) k steps of GMRES
— T+ T+ Ax

Typically, k is chosen to be 10-20, but convergence can be weird. Indeed, it is hard to reason about
this algorithm. Of course, it is often preconditioned, so that we solve M ~'Ax = M~1b.

Lecture 37: Krylov methods for eigenproblems (12/6)

We will discuss solving eigenproblems with Krylov subspaces:

e Variational/ Galerkin approach to eigenproblems
e What does the Krylov subspace contain (in practice)?

e Spectral transformations and filtering

Today we will focus on symmetric eigenproblems, so A = AT, Recall that for the Rayleigh quotient

pa(v) = ”:Té}“, the nonzero stationary points of p4 are eigenvectors, meaning that dpa(v) =0 =

Av =py(v)v.

The goal is to approximate eigenpairs from a subspace V. We are looking for v = Vy where V is a
(orthonormal) basis for V. Consider the Rayleigh quotient

Ty, T
pa(Vy) = nyVVTAV‘;y
B yTVTAVy
Ty
= pyrav (y)

We will find stationary points of the Rayleigh quotient over some subspace. This general method
is called a Rayleigh-Ritz procedure. The approximations (6,u) ~ (\,x) are called Ritz pairs,
where VI AVy =0y, u=Vy.

Recall that if u = v+e, where v is an actual eigenvector, then = A4+O(||e/|?). This comes directly
from the Rayleigh quotient.

A good choice of subspace to search over is a Krylov subspace K (A,b) for some random vector b.
Note that Ky (A,b) = span(b, Ab,..., A*¥~1b). These are power iterates, so we expect good estimates
for the eigenpair with maximal magnitude eigenvalue. Note that the Krylov subpaces are shift
invariant, meaning that Kp(A,b) = Kx(A—0ol,b) for o € R. Thus, we also expect good estimates
for the eigenpair with the minimal magnitude eigenvalue. For a polynomial p € Ry_[z],

bIp(A)TAp(A)b bT Ap(A)?b ,
o ATp(A~ ST p(AVZp(A)D p(A) commutes with A
_ Y b2Ap(A)?

Z?:l ij(/\j)Q

68

Thus, the approximation theory here is linked to polynomials (as in Krylov methods for linear
systems). This means that the spacing of the spectrum matters a lot in the approximation: clusters
of eigenvalues are hard to deal with, and the extremal eigenvalues are easier to approximate. Now,
let Q) be the orthonormal basis as in Lanczos,

QWT AQ®) =1k

It can be seen that interior eigenvalues are expensive to compute. They need lots of steps and
work from reothogonalization. One solution to this is implicit restarting, which essentially reduces
the size of the Krylov subspace on some steps while maintaining eigenvectors that have already
been converged to. This is the one used by eigs in ARPACK. Another approach is Krylov-Schur.
Yet another solution is explicit filtering/ spectral transformations. There are preconditioners for
eigenproblems, but they are complicated.

Spectral transformations

There are (simple) rational transformations and polynomial transformations. The simplest rational
transformation is of the form (A —oI)~!. For these methods, we need only a way to multiply by
this matrix, preferably with direct factorization. These converge first to the eigenvalues near o.
The Cayley transform is of the form (A —oI)"'(A+0ol),0 € RT. There is built-in support for
shift-invert and Cayley transforms in ARPACK. Polynomial methods have the advantage that they
do not require linear system solves. Spectrum slicing groups eigenvalues into slices, and solves with
polynomials that are focused on one group at a time.

69

