
Math 4250/ CS 4210: Numerical Analysis and Differential Equations

Derek Lim

Fall 2019

Instructor: Federico Fuentes

Course Description: Introduction to the fundamentals of numerical analysis: error analysis, approx-
imation, interpolation, numerical integration. In the second half of the course, the above are used to
build approximate solvers for ordinary and partial differential equations. Strong emphasis is placed on
understanding the advantages, disadvantages, and limits of applicability for all the covered techniques.
Computer programming is required to test the theoretical concepts throughout the course.

Textbook: Burden, Faires, and Burden, Numerical Analysis, CENGAGE Learning, 2015 (Edition: 10;
ISBN: 978-1-305-25366-7)

Lecture 1: Introduction to Numerical Analysis (8/29/19)

The following is MATLAB output that shows a difference between computer arithmetic and exact arith-
metic.

>> 170.6 + 6.9

ans =

177.5000

>> 177.5 - (170.6 + 6.9)

ans =

0

>> 177.5 - 170.6 - 6.9

ans =

5.3291e -15

The explosion of the Ariane 5 was caused by a numerical software error (see http://www-users.math.
umn.edu/˜arnold/disasters/ariane.html).

Specifically a 64 bit floating point number relating to the horizontal velocity of the rocket
with respect to the platform was converted to a 16 bit signed integer. The number was larger

1

http://www-users.math.umn.edu/~arnold/disasters/ariane.html
http://www-users.math.umn.edu/~arnold/disasters/ariane.html

than 32,767, the largest integer storeable in a 16 bit signed integer, and thus the conversion
failed.

Round-off errors and computer arithmetic

Numbers are stored in a finite number of bits by a computer. The amount of numbers that can be stored
by a computer is finite. These numbers are called floating point numbers. Many computer operations
with integers are exact e.g. 1+1 = 2. But not many operations with non-integers are exact e.g.

√
22 6= 2.

The error produced is called round-off error.

Binary floating-point numbers

The IEEE standard as created in 1985, and updated in 2008, is a specific system of representing floating
point numbers. For 64-bit double precision,

b1→ s is the sign
b2, . . . , b12→ c= b2210 + . . .+ b1120 is the characteristic or exponent

b13, . . . , b64→ f = b13
1
21 + . . .+ b64

1
252 is the mantissa or significand

(−1)s ·2c−1023 · (1 +f) is the resulting double precision number

Note that
0≤ f < 1 =⇒ 1≤ 1 +f < 2

0≤ c≤ 2047 =⇒ −1023≤ c−1023≤ 1024

also, c= 0 and c= 2047 are special cases, which may be 0,∞,−∞, or NaN.

The smallest positive f is called machine epsilon. For 64-bit double precision, εmach = 2−52 ≈ 2.2204×
10−16.

The largest possible allowed number is achieved at s= 0, c= 2046, and f =
(

1
2

)2
+ . . .+

(
1
2

)52
= 1−

(
1
2

)52
,

and is equal to 21023(1 + 1−2−52)≈ 1.7977×10308. Numbers above this produce overflow.

The smallest positive number is achieved at s= 0, c= 1, and f = 0, and is equal to 2−1022 ≈ 2.251 ·10−308.
Values below this produce underflow.

Integers are represented similarly. 16-bit integers are represented as r= b1215 + . . .+b1620. 216−1−215 =
32767 is the largest positive 16-bit integer. This limit lead to the crash of the rocket.

Given y ∈ R, we denote the floating point representation of y as fl(y).

Definition 0.1. If p∗ is an approximation of p, then we define

• p−p∗ actual error

• |p−p∗| absolute error

• |p−p
∗|

|p| relative error

2

Definition 0.2. p∗ approximates p to t significant digits if

|p−p∗|
|p|

≤ 5×10−t

Finite-Digit arithmetic

The operations +,−,×,÷ produce round-off error. Computer addition is denoted
x⊕y = fl(fl(x) +fl(y)), and the other operations are defined analogously.

Cancellation errors can occur in computer arithmetic. For instance, when x≈ y and both are approx-
imated to t significant digits, then x	y can have very large relative errors above t signficant digits.

Example 0.1. For x= 5
7 and y = .7142857142857141, the relative error is∣∣(x−y)− (x	y)

∣∣
|x−y|

≈ .1956

the 19% error is very large.

The order of operations also matters. The computer operations are not associative.

Example 0.2. Let f(x) = x3−6.1x2 + 3.2x+ 1.5. We want to evaluate f(4.71).

Naive: f1(x) = x⊗ (x⊗x)−6.1⊗x⊗x. . .
Nested: f2(x) = ((x	6.1)⊗x⊕3.2)⊗x⊕1.5

The relative error for nested evaluation is an order of magnitude lower.∣∣f(x)−f1(x)
∣∣∣∣f(x)

∣∣ ≈ 0.05∣∣f(x)−f2(x)
∣∣∣∣f(x)

∣∣ ≈ 0.005

Example 0.3. Suppose we wish to find the roots of ax2 + bx+ c, where a = c = 1 and b� 1. Then
b2−4ac≈ b2, so the root −b+

√
b2−4ac

2a faces cancellation error in the numerator.

Thus, instead we can look at

x1 = −b+
√
b2−4ac

2a

(−b−√b2−4ac
−b−

√
b2−4ac

)
= b2− (b2−4ac)

2a(−b−
√
b2−4ac)

= 2c
−b−

√
b2−4ac

3

Lecture 2: Interpolation (9/3)

1− cos2(x)
x2

f = @(x) (1- cos(x).ˆ2)./ xˆ2;
x = 1e -7;
format long
fexact = .999999999
f(x)

sin2(x)
x2

g = @(x) sin(x).ˆ2/x.ˆ2;
fexact
g(x)

ex = lim
n→∞

(1 + 1/n)n

clc
n = 1e15
exp (1)
e = (1+1/n)ˆn

Dividing 1 by a large number produces large error, which is amplified by raising the result to a large
power.

Applying the binomial theorem to (1 +1/n)n provides an accurate result.

s = 1;
for k = 1:20

s = s + prod (1 -(1:k)/n)./ factorial (k);
end
exp (1)
s

Overflow/ underflow error

n!
(1/2)(3/2) · · ·(n−1/2)

n = 1000;
factorial (n)
prod (1/2:n -1/2)

4

eval= factorial (n)/ prod (1/2:n -1/2)
eval2=prod((1:n) ./ (1/2:n -1/2))

Consider the Hilbert matrix, given by

(Hn)jk = 1
j+k−1 for 1≤ j,k ≤ n

we want to solve the linear system (Hn)v = b for v.

n = 10;
[ii , jj] = meshgrid (1:n);
H = 1./(ii+jj -1);
v = rand(n ,1);
b = H*v;
v - H \ b

There are at least 4 digits of error in solving for v. The condition number of this matrix is on the order
of 1013.

cond(H)

Interpolation

Consider a function f ∈ C[a,b]. We want to approximate f(x) from a sample (xi,f(xi))i and possibly
derivative information f ′(xi).

One natural idea is to use polynomials:

• Easy to compute, differentiate, integrate

• Polynomials can approximate continuous functions arbitrarily well

The second item is formally due to the following theorem

Theorem 1 (Stone-Weierstrass). Given f ∈C[a,b], there exists a sequence of polynomials pn ∈R[x] such
that pn uniformly converges to f .

Equivalently, for all ε > 0, there exists p ∈ R[x] such that ‖f −p‖∞ < ε

However, this theorem does not answer an important question—what degree should p be? This depends
on f and other factors.

The study of approximating functions with simpler functions is called approximation theory.

If we have f(x0),f ′(x0), . . . ,f (n)(x0), then we can approximate f(x) by the Taylor polynomial about x0

f(x)≈
n∑
k=0

f (k)(x0)
k! (x−x0)k near x0

5

This is not a good choice for approximating f(x) where x is far from x0. In fact, in can be an arbitrarily
bad choice away from x0.

The next simplest approach: given a sample of n+ 1 points (x0,f(x0)), . . . ,(xn,f(xn)), we can find a
unique polynomial pn(x) of degree n passing through those points.

The polynomial can be found by solving a linear system of equations.

f(x0) = pn(x0) = anx
n
0 + . . .+a1x0 +a0

...
...

f(xn) = pn(xn) = anx
n
n+ . . .+a1xn+a0

xn0 . . . x0 1
...

...
xnn . . . xn 1

V

an
...
a0

a

=

f(x0)

...
f(xn)

b

It can be shown that V is invertible. Thus, V a= b has unique solution a= V −1b. However, it turns out
that V is ill-conditioned. Computing V −1b produces large errors due to this ill-conditioning (especially
as n→∞). Conditioning is a measure of how much a function changes with small changes in the input.

For a continuous function g(x), the relative condition number at x is

cond(g) =
∣∣∣∣∣ x

g(x) ·g
′(x)

∣∣∣∣∣
For matrices, the relative condition number is

cond(A) =
∥∥∥A−1

∥∥∥‖A‖
for symmetric matrices A,

cond(A) = λmax
λmin

To see why this is the definition of the condition number note that
g(x+ δ)−g(x)

g(x)
/x+ δ−x

x
= x

g(x) ·
g(x+ δ)−g(x)

δ

Lagrange interpolation

Given x0, . . . ,xn, we wish to construct polynomials of degree n, called Lagrange polynomials L0, . . . ,Ln
satisfying

Li(xj) = δij

where δij is the Kronecker delta.

We know the exact form of these Lagrange polynomials:

Lk(x) = (x−x0) · · ·(x−xk−1)(x−xk+1) · · ·(x−xn)
(xk−x0) · · ·(xk−xk−1)(xk−xk+1) · · ·(xk−xn)

=
∏
i 6=k

x−xi
xk−xi

6

Then given f ∈ C[a,b], the unique interpolating polynomial of degree n passing through
(x0,f(x0)), . . . ,(xn,f(xn)) is given by pn(x) =

∑n
k=0 f(xk)Lk(x).

Lecture 3: Lagrange Polynomial Theory and Computation (9/5)

The following codes compute and plot Lagrange polynomials.
n = 4;
xk = linspace (-1, 1, n+1);
% can also choose another nodes like xk = [-.9, -.1, .2, .5]
% or xk = chebpts (n+1 ,1);
n = length (xk)-1;
x = -1:0.01:1;
y = mylagrange (xk ,x);
figure
hold on
plot(xk , zeros (1,n+1), ’ko’, xk , ones (1,n+1), ’ko’)
for k=1:n+1

plot(x, y(k ,:))
end
hold off

The following theorem is a result on how well the function f is approximated by the polynomial interpolant
Pn.

Theorem 2. Let f ∈ Cn+1[a,b], x0, . . . ,xn ∈ [a,b], and Pn is the unique polynomial interpolant of degree
n through these points. Then for all x ∈ [a,b], there exists a ξ ∈ [a,b] such that

f(x) = Pn(x) + f (n+1)(ξ)
(n+ 1)! (x−x0) · · ·(x−xn)︸ ︷︷ ︸

Rn(x)

In particular,

sup
x∈[a,b]

∣∣f(x)−Pn(x)
∣∣≤ sup

y∈[a,b]

∣∣∣∣∣f (n+1)(ξ(y))
(n+ 1)! (y−x0) · · ·(y−xn)

∣∣∣∣∣
To prove this theorem, we recall the following:

Lemma 1 (Rolle Theorem). For a function g ∈ C1[a,b] with g(a) = g(b) = 0, there exists ξ ∈ (a,b) such
that g′(ξ) = 0. i.e. g must attain a maximum or minimum inside the domain.

Lemma 2 (Generalized Rolle’s Theorem). For a function g ∈ Cn+1[a,b] that vanishes at n+ 2 points
x−1,x0, . . . ,xn ∈ [a,b], then there exists a ξ ∈ [a,b] such that g(n+1)(ξ) = 0.

Proof of theorem. If x= xk for some k, then f(x) = f(xk) =Pn(xk) =Pn(x), and Rn(xk) = 0, so the claim
holds.

If x 6= xk for any k, define a new function

g(t) = f(t)−Pn(t)−
(
f(x)−Pn(x)

)
·
n∏
i=0

t−xi
x−xi

7

Note that g ∈ Cn+1[a,b]. Moreover, g(xk) = f(xk)−Pn(xk) = 0 for each k. Also, g(x) = 0. Using the
generalized Rolle’s theorem, there exists a ξ ∈ [a,b] such that g(n+1)(ξ) = 0. Thus, we have that

0 = g(n+1)(ξ) = f (n+1)(ξ)−
(
f(x)−Pn(x)

) (n+ 1)!
(x−x0) · · ·(x−xn)

f(x) = Pn(x) + f (n+1)(ξ)
(n+ 1)! (x−x0) · · ·(x−xn)

We can also derive that

‖f −Pn‖∞ ≤ sup
y∈[a,b]

∣∣∣∣∣f (n+1)(ξ(y))
(n+ 1)! (y−x0) · · ·(y−xn)

∣∣∣∣∣
≤ sup
y∈[a,b]

∣∣∣∣∣f (n+1)(ξ(y))
(n+ 1)!

∣∣∣∣∣ sup
z∈[a,b]

∣∣(z−x0) · · ·(z−xn)
∣∣

=

∥∥∥f (n+1)
∥∥∥
∞

(n+ 1)! sup
z∈[a,b]

∣∣(z−x0) · · ·(z−xn)
∣∣

Thus, the approximation can be expected to be better if the (n+1)th derivative is small and the sample
points are distributed ”well” in [a,b]. However, equally-spaced nodes may lead to instabilities, especially
as n→∞.

Computing the Lagrange interpolation

Recall the formula for the polynomial interpolant:

Pn(x) =
n∑
k=0

f(xk)Lk(x) Lk(x) =
∏
i 6=k

x−xi
xk−xi

Evaluating the polynomial interpolant at a given x naively in this manner requires O(n2) flops since each
of the n+ 1 Lagrange polynomials requires O(n) flops. Also, updating with a new node (xn+1,f(xn+1))
requires a new computation from scratch.

To compute this in a better way, Newton’s divided differences have been used for a while. Now, the gold
standard is Barycentric Lagrange Interpolation. We rewrite

Lk(x) =
∏
i 6=k

x−xi
xk−xi

· x−xk
x−xk

=
∏n
i=0x−xi

(x−xk)
∏
i 6=k(xk−xi)

= L(x) wk
x−xk

where we define
L(x) =

n∏
i=0

x−xi wk =
∏
i 6=k

1
xk−xi

8

therefore we have an equivalent form of the interpolant, called the Barycentric interpolation formula
in its first form

Pn(x) = L(x)
n∑
k=0

wk
x−xk

f(xk)

This requires O(n2) flops to compute the wk, but this only has to be done once as a preprocessing step.
Then O(n) flops are required to evaluate the polynomial at each x. Also, it only takes O(n) flops to update
with a new node. Additionally, the wk do not depend on f . Thus, it does not take extra preprocessing
to evaluate the interpolant of a different function f . Also, this does not depends on the ordering of the
nodes.

However, this formula can be numerically unstable near the xk. This issue can be fixed, using the
Barycentric formula of the second form.

1 =
n∑
k=0

Lk(x) = L(x)
n∑
k=0

wk
x−xk

Pn(x) =
L(x)

∑n
k=0

wk
x−xk f(xk)

L(x)
∑n
k=0

wk
x−xk

=
∑n
k=0

wk
x−xk f(xk)∑n
k=0

wk
x−xk

although it may seem like there is cancellation error, the division cancels out the cancellation errors.

Lecture 4: Osculating Polynomials (9/10)

n=10;
xk= linspace (-1,1,n+1);
%xk = chebpts (n+1 ,1); % stable !
x = -1:0.001:1;
y= mylagrange (xk ,x);

This gives Lagrange polynomials which take large values. The spacing between the nodes is uniform,
which gives issues. Also, for interpolating along the function 1

1+25x2 , we see Runge’s phenomenon, where
there is severe oscillation of the interpolating polynomial along the edges of the interval of approximation.
Chebyshev nodes work much better.

Hermite interpolation

We will again have a function f : [a,b]→ R that we wish to interpolate. Now, we also assume we know
the values of the derivative f ′, along with the value of f , at sample points x0, . . . ,xn. Our problem is
to find the polynomial of minimum degree that both agrees with f and shares the same derivative as f
for all points x0, . . . ,xn. This polynomial is called the Hermite interpolant. It is one example of an
osculating polynomial.

Definition 0.3. Let x0, . . . ,xn be distinct points in [a,b]. For each i= 0, . . . ,n, let mi ≥ 0 be an integer.
Suppose f ∈ Cm[a,b], where m = maxi(mi). The osculating polynomial p(x) approximating f is the

9

polynomial of minimal degree satisfying that

p(k)(xi) = f (k)(xi) for i= 0, . . . ,n, k = 0, . . . ,mi

the degree is at most M = (
∑n
i=0mi) +n.

Note that when mi = 0 for each i, the osculating polynomial is just regular polynomial interpolation.
When mi = 1 for each i, the osculating polynomial is the Hermite interpolant.

Theorem 3. Let f ∈C1[a,b] and x0, . . . ,xn ∈ [a,b] be distinct points. The Hermite interpolant is of degree
at most 2n+ 1, and is given exactly by:

Q2n+1(x) =
n∑
k=0

f(xk)Hk(x) +
n∑
k=0

f ′(xk)Ĥk(x)

Hk(x) =
(
1−2(x−xk)L′k(xk)

)
L2
k(x)

Ĥk(x) = (x−xk)L2
k(x)

Lk(x) =
∏
j 6=k

x−xj
xk−xj

Moreover, if f ∈ C2n+2[a,b], then for each x ∈ [a,b],

f(x) =Q2n+1(x) + f2n+2(ξ(x))
(2n+ 2)! (x−x0)2 · · ·(x−xn)2 for some ξ(x) ∈ [a,b]

And thus the error is bounded as such:

‖f −Q2n+1‖∞ ≤ sup
y∈[a,b]

∣∣∣∣∣f (2n+2)(y)
(2n+ 2)! (y−x0)2 · · ·(y−xn)2

∣∣∣∣∣
Newton divided differences

Evaluating Hermite interpolant by hand is tedious. There is an easy way to evaluate them using divided
differences. This is another way of interpolating polynomials.

For a function f and sample points x0, . . . ,xn, we wish to find an interpolating polynomial pn. We rewrite
pn(x) as pn(x) = c0 + c1(x−x0)+ c2(x−x0)(x−x1)+ . . .+ cn(x−x0) · · ·(x−xn−1). This is just rewriting
the polynomial in a basis different from the power basis. Here, the basis is [1, (x−x0), . . . ,(x−x0) · · ·(x−

10

xn−1)]. Then we have that

f(x0) = pn(x0)
= c0

f(x1) = pn(x1)
= c0 + c1(x1−x0)
= f(x0) + c1(x1−x0)

=⇒ c1 = f(x1)−f(x0)
x1−x0

f(x2) = c0 + c1(x1−x0) + c2(x2−x0)(x2−x1)

= f(x0) + f(x1)−f(x0)
x1−x0

(x2−x0) + c2(x2−x0)(x2−x1)

= f(x0) + f(x1)−f(x0)
x1−x0

(x2−x1 +x1−x0) + c2(x2−x0)(x2−x1)

= f(x0) + f(x1)−f(x0)
x1−x0

(x1−x0) + f(x1)−f(x0)
x1−x0

(x2−x1) + c2(x2−x0)(x2−x1)

= f(x1) + f(x1)−f(x0)
x1−x0

(x2−x1) + c2(x2−x0)(x2−x1)

=⇒ c2 =
f(x2)−f(x1)

x2−x1
− f(x1)−f(x0)

x1−x0

x2−x0

We define f [xi, . . . ,xi+k], the kth divided difference, recursively as follows:

f [xi] = f(xi)

f [xi,xi+1] = f(xi+1)−f(xi)
xi+1−xi

f [xi,xi+1,xi+2] = f [xi+1,xi+2]−f [xi,xi+1]
xi+2−xi

f [xi, . . . ,xi+k] = f [xi+1, . . . ,xi+k]−f [xi, . . . ,xi+k−1]
xi+k−xi

To reconstruct the polynomial from these, use Newton’s interpolation formula for pn(x)

f [x0] +f [x0,x1](x−x0) +f [x0,x1,x2](x−x0)(x−x1) . . .+f [x0, . . . ,xn](x−x0) · · ·(x−xn−1)

= f [x0] +
n∑
k=1

f [x0, . . . ,xk]
k−1∏
j=0

(x−xj)

This can be written in nested form for more efficient computation, but we will not do this. Now, we
discuss how to compute the polynomials.

We use a Newton’s tableau of divided differences

Lecture 5: Divided Differences, Cubic Splines (9/12)

Note that we only use the top row of the Newton tableau to compute the polynomial.

11

When updating a Newton tableau with a new node, we can simply add a new row, then the tableau can
be updated in O(n) operations, where n is the number of nodes. Note that all divided differences are
independent of x, so it takes O(n2) flops to compute the tableau. Then it takes O(n) flops to evaluate at
each point. Thus, the divided difference method is more efficient than Lagrange interpolation. However,
the coefficients in the table depend on the function. If the function changes, then the table must be
recomputed. Also, the table depends on the ordering of nodes, which may lead to unstable computations.
Barycentric Lagrange interpolation polynomials do not face these last two weaknesses.

For Hermite interpolation, there is an easy modification. Say we have nodes x0, . . . ,xn, and the function
values f(xi) and f ′(xi) at these nodes. Define z0,z1, . . .z2n,z2n+1 as z2j = z2j+1 = xj for j = 0, . . . ,n.
Define the special divided difference f [z2j ,z2j+1] = f ′(xj). Note that the special divided difference is
defined when the normal divided difference is undefined due to division by 0. Then the final Hermite
polynomial is

Q2n+1(x) = f [z0] +
2n+1∑
k=1

f [z0, . . . ,zk](x−z0) · · ·(x−zk−1)

This method also works to find the osculating polynomial when we have derivative information at some
subset of the nodes.

Cubic spline interpolation

Issue with single polynomial interpolation: The choice of nodes may lead to erratic or large oscillations
(like in the Runge phenomenon).

Benefits: Smooth, easy to compute, backed by theory.

We have seen many benefits and some issues with single polynomial interpolation. Another type of
interpolation is piecewise linear interpolation. However, the interpolating function S is generally not
differentiable at the nodes. Also, the derivative will be a step function, so S ∈ C0[a,b] but S /∈ C1[a,b].
The piecewise linear interpolation is still less prone to oscillations.

Piecewise quadratic interpolation is possible to guarantee continuous derivatives of the interpolating
function. However, the end nodes are edge cases. Thus, piecewise cubic interpolation is often used.

For nodes x0, . . . ,xn, define S0 to be the interpolating function between x0 and x1, S1 to be the inter-
polating function between x1 and x2, and so on. We require the interpolating function to satisfy the
following:

(a) S(x) restricted to [xj ,xj+1] is a cubic polynomial Sj(x)
(b) Sj(xj) = f(xj), Sj(xj+1) = f(xj+1)
(c) Sj(xj+1) = Sj+1(xj+1)
(d) S′j(xj+1) = S′j+1(xj+1)
(e) S′′j (xj+1) = S′′j+1(xj+1)

The last three conditions are called compatibility conditions. These conditions are not enough to get
a unique spline. Any one of the following boundary conditions is sufficient to guarantee uniqueness:

• (f)(i) S′′(x0) = S′′(xn) = 0 called a natural or free spline.

12

• (f)(ii) S′(x0) = f ′(x0), S′(xn) = f ′(xn) called a clamped spline.

The natural or free spline is used most often, for instance in the MATLAB implementation.

Construction of cubic splines

We use this following ansatz for Sj(x):

Sj(x) = aj + bj(x−xj) + cj(x−xj)2 +dj(x−xj)3

We have n Sj ’s, each with aj , bj , cj ,dj unknown, so we have 4n constants to determine. This ansatz
is convenient, because f(xj) = Sj(xj) = aj . Thus, we already know n of the constants. Using (c) with
hj := xj+1−xj ,

aj+1 = Sj+1(xj+1) = Sj(xj+1) = aj + bjhj + cjh
2
j +djh

3
j

using (d), we obtain
bj+1 = bj + 2cjhj + 3djh2

j

Lecture 6: Cubic Splines, Bezier Curves (9/17)

Comparing Lagrange, Hermite, and cubic splines on Runge’s function with equally spaced nodes, we
see that the Lagrange and Hermite interpolants both oscillate, while the cubic spline matches the curve
pretty well. With not too many Chebyshev nodes, the Hermite interpolant matches the function very
well, while the Lagrange interpolant still somewhat oscillates.

Note that the US Treasury yield curve is computed daily using cubic spline models! See treasury webpage
here.

Construction of cubic splines (cont.)

After several manipulations, we get that

dj = 1
3hj

(cj+1− cj)

bj = 1
hj

(aj+1−aj)−
hj
3 (2cj + cj+1)

Finally,

hj−1cj−1 + 2(hj−1 +hj)cj +hjcj+1 = 3
hj

(aj+1−aj)−
3

hj−1
(aj−aj−1) j = 1, . . . ,n−2

Note that we are missing j = 0, j = n−1. Adding one of the boundary conditions gives sufficient data to
solve the system.

Theorem 4 (Natural splines). Let f be defined at a = x0 < x1 < .. . < xn = b. Then there is a unique
natural spline S ∈ C2[a,b] interpolating f such that S′′(a) = S′′(b) = 0.

13

https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/textview.aspx?data=yield
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/textview.aspx?data=yield

Proof. The boundary conditions imply that cn := S′′(b)
2 = 0, and 0 = S′′(a) = 2c0 + 6d0(x0−x0) = 2c0, so

c0 = 0. This gives n+ 1 equations and n+ 1 unknowns

1
h0 2(h0 +h1) h1

h1 2(h1 +h2) h2
.
hn−2 2(hn−2 +hn−1) hn−1

1

c0
c1
...

cn−1
cn

=

0
3
h1

(a2−a1)− 3
h0

(a1−a0)
...

3
hn−1

(an−an−1)− 3
hn−2

(an−1−an−2)
0

Afc= bf

Af is strictly diagonally dominant, hence nonsingular, and the linear system has a unique solution.

Theorem 5. Let f be defined at a = x0 < x1 < .. . < xn = b. Then there is a unique clamped spline
S ∈ C2[a,b] interpolating f such that S′′(a) = S′′(b) = 0.

Proof. The proof is much the same, except the first and last rows of the linear system will be different.

Theorem 6. If f ∈ C4[a,b], M =
∥∥∥f (4)

∥∥∥
∞

, and S is the unique clamped spline, then

‖f −S‖∞ ≤
5M
584 · max

0≤j≤n−1
(xj+1−xj)4︸ ︷︷ ︸

hj

Clamped splines typically perform better than free splines, but require more information about the
function.

Parametric curvers/ Bezier curves

These curves are very important in computer graphics. If we have a curve that is not a well defined
function of one variable, we cannot approximate the curve by directly applying the previously covered
approaches. Say we have a parametric curve (x(t),y(t)) with a parameter t, and nodes
(x(t0),y(t0)), . . . , (x(tn),y(tn)). Then we can interpolate a polynomial on each set of nodes.

P xn (t) =
n∑
k=0

x(tk)Lk(t)

P yn (t) =
n∑
k=0

y(tk)Lk(t)

This forms an interpolating parametric curve (P xn (t),P yn (t)). Likewise, we can form a spline approxima-
tion.

Some issues with these approaches include the fact that an interpolating curve must be completely
recomputed if one node is moved. In graphics applications, this is often unacceptable, so approximations
depending on local data are often used and thus updates are based on local changes.

14

We seek the lowest order polynomial between two points v0 = (x0,y0) and v1 = (x1,y1) where the deriva-
tives of the function are known. This is a Hermite interpolant (for each coordinate), where n= 1, so it is
a cubic. Say we have control points c0 = (x0 +α0,y0 +β0) and c1 = (x1−α1,y1−β1). Thus, we have

dy

dx
|t0= β0

α0
= 3β0

3α0

x(0) = x0 x(1) = x1 x′(0) = 3α0 x′(1) = 3x1

y(0) = y0 y(1) = y1 y′(0) = 3β0 y′(1) = 3y1

That Hermite interpolant also coincides with the simplest clamped spline. After manipulation, the
resulting curve is

v(t) =
[
x(t)
y(t)

]
=
[
(1− t)3x0 + 3(1− t)2t(x0 +α0) + 3(1− t)2t(x1−α1) + t3x1
(1− t)3y0 + 3(1− t)2t(y0 +β0) + 3(1− t)2t(y1−β1) + t3y1

]

or, equivalently,
v(t) = (1− t)3v0 + 3(1− t)2tc0 + 3(1− t)t2c1 + t3v1

where v0 =
[
x0
y0

]
c0 =

[
x0 +α0
y0 +β0

]
c1 =

[
x0−α1
y0−β1

]
v1 =

[
x1
y1

]
This is called the Bezier curve between (x0,y0) and (x1,y1).

Note that this can be extended to higher dimensional points in the obvious way. Other curves used in
computer graphics include B-splines, NURBS, and T-splines.

Lecture 7: September 19

Approximation Theory

The goal is to find simple functions that approximate a given function. We want the best way to ”fit”
the data. Say we have data (x1,y1), . . . ,(xm,ym).

A basic example is discrete least squares approximation. Exact interpolation by polynomials for many
noisy data points is likely not useful. In discrete least squares approximation, we find the best fit line
a0 + a1x. We can measure the error ei =

∣∣yi− (a0 +a1xi)
∣∣ for a single data point. There are several

approaches to measure global error of the approximation:

• Best approximation in l∞ norm.

E∞(a0,a1) = max
1≤i≤m

ei = max
1≤i≤m

∣∣yi− (a0 +a1)xi
∣∣

We want to find (a0,a1)⊆ R2 that minimizes E∞. The resulting minimax optimization problem is

min
(a0,a1)∈R2

max
1≤i≤m

∣∣yi− (a0 +a1xi)
∣∣

which cannot be handled with elementary techniques.
Note that this error is very sensitive to outliers.

15

• Best approximation in l1 norm.

E1(a0,a1) =
m∑
i=1

∣∣yi− (a0 +a1)xi
∣∣

Minimizing E1 could lead to trouble because the absolute value is not differentiable at 0. This error
could place too little weight on data that is far from the trend.

• Best approximation in l2 norm.

Ẽ2(a0,a1) =

√√√√ n∑
i=1

(yi− (a0 +a1)xi)2

minimizing this is equivalent to minimizing

E2(a0,a1) =
n∑
i=1

(yi− (a0 +a1)xi)2

This function is differentiable, which is very convenient theoreticallly. For minimization, we find
roots of the partial derivatives.

0 = ∂a0E =−
m∑
i=1

2(yi− (a0 +a1)xi)

=−2
[m∑
i=1

yi−a1

m∑
i=1

xi−a0

m∑
i=1

1
]

0 = ∂a1E =
m∑
i=1

2(yi− (a0 +a1xi))(−xi)

=−2
[m∑
i=1

yixi−a1

m∑
i=1

x2
i −a0

m∑
i=1

xi
]

Thus, we have the normal equations

a0m+a1

m∑
i=1

xi =
m∑
i=1

yi

a0

m∑
i=1

xi+a1

m∑
i=1

x2
i =

m∑
i=1

yixi

This is a linear system of equations with only two unknowns that can be solved for explicitly.[
c00 c01
c10 c11

][
a0
a1

]
=
[
d0
d1

]

Now, we consider approximation with more complicated functions, such as higher degree polynomials. In
the problem of polynomial least squares, we wish to find (a0, . . . ,an) such that pn(x) = a0 +a1x+ . . .+anxn
is the best least squares approximation to the data (x1,y1), . . . ,(xm,ym) with n+ 1 < m. Note that if
n+ 1≥m, then exact interpolation would be possible.

16

E(a0, . . . ,an) =
m∑
i=1

(yi−pn(xi))2

=
m∑
i=1

y2
i −2

m∑
i=1

yipn(xi) +
m∑
i=1

pn(xi)2

=
m∑
i=1

y2
i −2

m∑
i=1

(
n∑
j=0

ajx
j
i)yi+

m∑
i=1

(
n∑
j=0

ajx
j
i)

2

=
m∑
i=1

y2
i −2

n∑
j=0

aj(
m∑
i=1

xji)yi+
n∑
j=0

n∑
k=0

ajak

m∑
i=1

xj+ki

Now, we compute the roots of the partial derivatives ∂ajE = 0 for j = 0, . . . ,n

0 = ∂ajE =−2
m∑
i=1

xjiyi+ 2
n∑
k=0

ak

m∑
i=1

xj+ki

then we rearrange them to get the n+ 1 normal equations
n∑
k=0

ak

m∑
i=1

xj+ki︸ ︷︷ ︸
cjk

=
m∑
i=1

yix
j
i︸ ︷︷ ︸

bj

j = 0, . . . ,n

so we have a linear system of the form
c00 . . . c0n
...
cn0 . . . cnn

a0
...
an

=

b0
...
bn

We can also consider other ansatzes. For instance, we can consider a best least squares approximation
to y = beax, with error E(a,b) =

∑m
i=1(yi− beaxi)2. In general, other ansatzes give nonlinear systems of

equations, which may not have a unique solution or may pose other complications such as existence of
many local minima which are far from the global minimum.

Note that y = beax =⇒ ln(y) = ln(b) +ax. This gives a linear least squares problem. However, this may
give a different solution than that of properly solving the original problem.

Lecture 8: September 24

Orthogonal polynomials and least squares approximation of functions

Previously, we wished to compute an approximation to a finite number of points
(x1,y1), . . . ,(xm,ym). Now, say we have a function f ∈ C[a,b], and we wish to approximate it over the
entire domain.

17

With discrete data, we minimize l2 error E2(a0, . . . ,an) =
∑m
i=1(yi−pn(x))2. We can also write this as

E =
m∑
i=1

(yi−pn(xi))(yi−pn(xi))

= (y−pn(x)) · (y−pn(x))

=
〈
y−pn(x),y−pn(x)

〉
We have already used the L∞ norm ‖f −p‖∞ = maxa≤x≤b

∣∣f(x)−p(x)
∣∣. Another choice is the L1 norm,

given by ‖f −p‖1 =
∫ b
a

∣∣f(x)−p(x)
∣∣ dx. We will use the L2 norm,

‖f −p‖2 =
√∫ b

a

∣∣f(x)−p(x)
∣∣2 dx.

L2 error (squared) is given by

E = E(a0, . . . ,an) =
〈
f −p,f −p

〉
=
∫ b

a
(f(x)−p(x))2 dx

where the L2 inner product is 〈f,g〉=
∫ b
a f(x)g(x) dx.

Now, we consider how to actually find p. First, rewrite E.

E =
∫ b

a
(f(x)−p(x))2 dx

=
∫ b

a
f(x)2 dx−2

n∑
k=0

ak

∫ b

a
xkf(x) dx+

∫ b

a

(n∑
k=0

akx
k
)2
dx

Since we want to minimize E, we differentiate with respect to the coefficients.

∂ajE =−2
∫ b

a
xjf(x) dx+ 2

n∑
k=0

ak

∫ b

a
xj+k dx

This leads to the normal equations:
n∑
k=0

ak

∫ b

a
xj+k dx︸ ︷︷ ︸
Ajk

=
∫ b

a
xjf(x) dx︸ ︷︷ ︸

bj

, j = 0, . . . ,n

A

a0
...
an

= b

Now we rewrite the normal equations
n∑
k=0

ak〈xj ,xk〉= 〈xj ,f〉 j = 0, . . . ,n

this is analogous to the normal equations for discrete data, with the difference that the inner product is
now the L2 inner product instead of the dot product. Note that

Ajk =
∫ b

a
xj+k dx= bj+k+1−aj+k+1

j+k+ 1
A is a Hilbert matrix, which is notoriously ill-conditioned and difficult to invert. Instead of computing p
in this way, we use orthogonal polynomials.

18

Theorem 7. Suppose φj is a polynomial of order j for j = 0, . . . ,n. Then {φ0, . . . ,φn} is linearly inde-
pendent.

Proof. Suppose p(x) = c0φ0(x) + . . .+ cnφn(x) = 0. Rewrite p(x) = anx
n+ . . .+a1x+a0 = 0. This means

that ai = 0 for i= 0, . . . ,n. The only degree n term is in cnφn(x). So cn = 0 (otherwise an 6= 0). Proceed
recursively.

Theorem 8. dim Pn = n+ 1

Orthogonal functions

Definition 0.4. A weight function is an integrable function w(x) on (a,b) such that w(x)> 0 (except
on some set of points of measure zero).

For example, w(x) = 1√
1−x2 is a weight function on (−1,1). This is putting more weight by the endpoints

of the intervals.

The weighted L2 inner product (or L2
W inner product), is

〈f,g〉W =
∫ b

a
f(x)g(x)w(x) dx

the usual L2 inner product occurs at w = 1.

Definition 0.5. {φ0, . . . ,φn} ⊆ C[a,b] is L2
W orthogonal in [a,b] if

〈φj ,φk〉W =
∫ b

a
φj(x)φk(x)w(x) dx= δjkαj

where αj = 〈φj ,φj〉W . If all the αj = 1, the set is called L2
W orthonormal.

Theorem 9. If {φ0, . . . ,φn} are L2
W orthogonal, then the (weighted) least-squares best approximation to

a function f ∈ C[a,b] is

p(x) =
n∑
j=0

ajφj(x)

aj = 〈φj ,f〉
〈φj ,φj〉

= 1
αj

∫ b

a
φj(x)f(x)w(x) dx

Proof. First, rewrite E

E =
〈
f −

n∑
j=0

ajφj ,f −
n∑
j=0

ajφj
〉
W

=
〈
f,f

〉
W
−2

n∑
k=0

ak
〈
φj ,f

〉
W

+
n∑
k=0

n∑
j=0

ajak
〈
φj ,φk

〉
W

19

we differentiate with respect to the aj in the same way as earlier, and obtain the normal equations

n∑
k=0

ak 〈φk,φj〉W︸ ︷︷ ︸
Ajk

= 〈φj ,f〉W j = 0, . . . ,n

Here, we have Ajk = 〈φj ,φk〉W = αjδjk by orthogonality. Thus,

A=

α0

. . .
αn

is a diagonal matrix with αj =

∫ b
a (φj(x))2w(x) dx. Therefore, the normal equations become

ajαj = 〈φj ,f〉W j = 0, . . . ,n

aj = 〈φj ,f〉W
αj

j = 0, . . . ,n

aj = 〈φj ,f〉W
〈φj ,φj〉W

j = 0, . . . ,n

and the claim is proven.

Lecture 9: September 26

Theorem 10. Let φ̃0, . . . , φ̃n ∈ C[a,b] be linearly independent. Then the Gram-Schmidt process in L2
W

results in an orthogonal set with the same span as the original.

φk(x) = φ̃k(x)−
k−1∑
j=0

〈φ̃k,φj〉W
〈φj ,φj〉W

φj(x)

Proof. By strong induction.

〈φk,φi〉=
〈
φ̃k−

k−1∑
j=0

〈φ̃k,φj〉
〈φj ,φj〉

φj , φi
〉
W

= 〈φ̃k,φi〉−
k−1∑
j=0

〈φ̃k,φj〉
〈φj ,φj〉

〈φj ,φi〉W

= 〈φ̃k,φi〉−
〈φ̃k,φi〉
〈φi,φi〉

〈φi,φi〉W

= 0

20

Example 0.4 (Legendre polynomials). For L2 and a linearly independent set {1,x, . . . ,xn}, Gram-
Schmidt results in Legendre polynomials. On [a,b] = [−1,1],

φ0(x) = 1

φ1(x) = x− 〈x,φ0〉
〈1,1〉 φ0(x)

= x

φ2(x) = x2− 〈x
2,x〉
〈x,x〉

x− 〈x
2,1〉
〈1,1〉 ·1

= x2− 1
3

φ3(x) = x3− 3
5x

φ4(x) = x4− 6
7x

2 + 3
35

Example 0.5. When we choose weight e−x and the interval to be [0,∞), Gram-Schmidt results in
Laguerre polynomials.

Chebyshev polynomials

The Chebyshev polynomials of the first type {Tn(x)}∞n=0 on [−1,1] result from Gram-Schmidt with
the weight

w(x) = 1√
1−x2

they are given by
Tn(x) = cos(narccos(x)) n≥ 0

The Chebyshev polynomials of the second type are

Un−1(x) = 1
n
T ′n(x) n≥ 1

We verify that these are indeed polynomials

T0(x) = cos(0) = 1
T1(x) = cos(arccos(x)) = x

Now, we use a recurrence relationship for the rest of the polynomials. Define θ(x) = arccos(x). Then

Tn(x) = cos(nθ(x))
Tn+1(x) = cos((n+ 1)θ(x))

= cos(θ)cos(nθ)− sin(θ)sin(nθ)
Tn−1 = cos((n−1)θ)

= cos(θ)cos(nθ) + sin(θ)sin(nθ)
Tn+1 +Tn−1 = 2cos(θ)cos(nθ)

= 2xTn
Tn+1(x) = 2xTn(x)−Tn−1(x) n≥ 1

21

We thus continue computing

T2(x) = 2xT1(x)−T0(x) = 2x2−1
T3(x) = 2xT2(x)−T1(x) = 2x(2x2−1)−x

= 4x3−3x
T4(x) = 8x4−8x2 + 1

the recurrence guarantees that all of these Tn are indeed polynomials. Note that Tn has leading coefficient
an = 2n−1 for n≥ 1. Now, we check that they are orthogonal

〈Tn,Tm〉w =
∫ 1

−1

Tn(x)Tm(x)√
1−x2

dx

=
∫ 1

−1

cos(nθ)cos(mθ)√
1−x2

dx

θ = arccos(x), dθ = −1√
1−x2

dx

=−
∫ 0

π

cos(nθ)cos(mθ)√
1−x2

√
1−x2 dθ

=
∫ π

0
cos(nθ)cos(mθ) dθ

=
∫ π

0

1
2(cos((n+m)θ) + cos((n−m)θ) dθ

For n 6=m, we have

〈Tn,Tm〉w =
[1
2

sin((n+m)θ)
n+m

]π
0

+
[1
2

sin((n−m)θ)
n−m

]π
0

= 0

For n=m≥ 1, we have

〈Tm,Tm〉w = 1
2

sin((n+m)θ)
n+m

]π
0

+ 1
2

∫ π

0
1 dθ

= π

2

When n=m= 0, we have
〈T0,T0〉w =

∫ π

0

1
2(1 + 1) dθ = π

Chebyshev polynomials:

1. Are used to optimally select interpolation points to minimize interpolation error (in ‖·‖∞)

2. Show a way of reducing degree of an approximating polynomial with minimal loss of accuracy

3. Represent a close connection with trigonometric functions. For instance, they are used in spectral
methods, and can take advantage of many fast algorithms for trigonometric functions (e.g. FFT).

22

Theorem 11. The Chebyshev polynomials Tn, n ∈ Z+ have n simple zeros in [−1,1] at the points

xk = cos
(2k−1

2n π
)

k = 1, . . . ,n

Moreover, Tn(x) attains its absolute extrema at the n+ 1 points

x′k = cos
(k
n
π
)

k = 0, . . . ,n

at which Tn(x′k) = (−1)k.

Proof. Let us manually check that xk are zeros.

Tn(xk) = cos
(
narccos

(
cos

(2k−1
2n π

)))
= cos

(2k−1
2 π

)
= cos

(
kπ− π2

)
k = 1, . . . ,n

These are n distinct roots of a degree n polynomial, so they must all have multiplicity one.

To find extrema (minima/ maxima), we differentiate.

T ′n(x) = d

dx
cos(narccos(x))

=−sin(narccos(x))n −1√
1−x2

= nsin(narccos(x))√
1−x2

= nUn−1

We evaluate at each of the points

T ′n(x′k) = nsin(narccos(cos((k/n)π)))√
1−x2

= nsin(kπ)√
1−x2

= 0 k = 1, . . . ,n−1

The endpoints are
x′n =−1 = cos(π) x0 = 1 = cos(0)

Thus, the extrema are

Tn(x′k) = cos(narccos(cos((k/n)π))) = cos(kπ) = (−1)k k = 0, . . . ,n

Note in particular that ‖Tn‖∞ = 1.

23

Lecture 10: 10/1

The monic Chebyshev polynomials are given by

T̃0(x) = 1 T̃n(x) = 1
2n−1Tn

The recurrence to compute these polynomials is

T̃2(x) = xT̃1(x)− 1
2 T̃0(x)

T̃n+1(x) = xT̃n(x)− 1
4 T̃n−1(x) n≥ 2

These polynomials of course have the same zeros as the Chebyshev polynomials, and its derivatives have
the same zeros as the derivatives of the Chebyshev polynomials.

T̃n(xk) = 0 k = 1, . . . ,n
T̃ ′n(x′k) = 0 k = 1, . . . ,n−1

T̃n(x′k) = (−1)k

2n−1 k = 0, . . . ,n

so that
∥∥∥T̃n∥∥∥∞ = 1

2n−1 .

Let P̃n be the monic polynomials of degree n. Then T̃n has a special minimization property.

Theorem 12. For all n ∈ N, T̃n satsifies

1
2n−1 =

∥∥∥T̃n∥∥∥∞ ≤‖pn‖
for any monic polynomial pn ∈ P̃n. Equality occur if and only if pn = T̃n.

Proof. Assume pn ∈ P̃n has ‖pn‖ ≤ 1
2n−1 . Define Q= T̃n−pn. Both T̃n and pn are monic, so Q has degree

at most n−1.

Moreover, at x′k = cos((k/n)π), we consider the evaluation of Q. For k odd, Q(x′k) ≤ 0 and for k even,
Q(x′k) ≥ 0. Since Q is continuous, the intermediate value theorem implies that there exist roots ξj ∈
[x′j ,x′j+1] for j = 0, . . . ,n−1. Since Q is degree n−1 with n roots, Q is zero.

Minimization of Lagrange interpolation error

For f ∈ Cn+1[−1,1], recall that the interpolating polynomial Pn satisfies that

‖f −Pn‖∞ ≤

∥∥∥f (n+1)
∥∥∥
∞

(n+ 1)! ‖w‖∞

where w = (x−x0) · · ·(x−xn) ∈ P̃n+1. We do not have control over f , but we can control w by choice of
nodes. The minimizing ‖w‖∞ (optimal) is

‖w‖∞ =
∥∥∥T̃n+1

∥∥∥
∞

= 1
2n

24

occurs when w = T̃n+1. Therefore, choosing the nodes to be the roots of T̃n, xk = cos
(

2k+1
2(n+1)π

)
for

k = 0, . . . ,n, will yield that w = T̃n. Therefore, with this choice of Chebyshev nodes,

‖f −Pn‖∞ ≤
1

2n(n+ 1)!

∥∥∥f (n+1)
∥∥∥
∞

Now, suppose we wish to approximate a function in another domain [a,b]. We simply shift the nodes
linearly from x ∈ [−1,1] to s ∈ [a,b], where s= 1

2((b−a)x+ (a+ b)). The final bound takes the form

‖f −Pn‖∞ ≤
(b−a

2
)n+1 1

2n(n+ 1)!

∥∥∥f (n+1)
∥∥∥
∞

where the sup-norm is taken over x ∈ [a,b].

Best approximations to other polynomials

Let Qn+1(x) = an+1x
n+1 + . . .+a1x+a0. We would like the best approximation by another polynomial

pn ∈ Pn that minimizes ‖Qn+1−pn‖∞.

Theorem 13. The minimizing polynomial pn satisfies

|an+1|
2n =‖Qn+1−pn‖∞ ≤‖Qn+1− qn‖∞ ∀qn ∈ Pn

and is given by pn =Qn+1−an+1T̃n+1 ∈ Pn.

Proof. For any polynomial pn of degree at most n,

‖Qn+1−pn‖∞ = |an+1|
∥∥∥∥∥ 1
an+1

(Qn+1−pn)
∥∥∥∥∥
∞

and 1
an+1

(Qn+1−pn) ∈ P̃n+1. Thus, the minimal norm is

|an+1|
2n =

∥∥(Qn+1−pn)
∥∥
∞

and occurs when 1
an+1

(Qn+1−pn) = T̃n+1. Rearranging this gives pn =Qn+1−an+1T̃n+1.

The next theorem deals with the best approximation error in the supremum (L∞) norm.

Theorem 14 (Chebyshev’s Equioscillation theorem). For f ∈C[a,b], the polynomial pn ∈ Pn minimizes
‖f −pn‖∞ over Pn if and only if there are n+ 2 points a≤ x0 < .. . < xn+1 ≤ b such that

f(xj)−pn(xj) =±(−1)j‖f −pn‖∞

In practice, we use minimax algorithms (most commonly Remez algorithm) to approximate.

25

Lecture 11: 10/3

Note that the Chebyshev points are uniformly spaced in radial coordinates. Whereas equally spaced
nodes in x do not work well with interpolation, these do. The Chebyshev points of the second type have
a nesting property when doubled; this is taken advantage of in certain algorithms.

Trigonometric polynomial approximation

Up to this point, we have been considering orthogonal families φ0,φ1, . . . ,φn of polynomials. Now, we
consider the family φ0, . . . ,φ2n−1 defined by

φ0(x) = 1
2 = 1

2 cos(0x)

φk(x) = cos(kx) k = 1, . . . ,n
φn+k(x) = sin(kx) k = 1, . . . ,n−1

for x ∈ [−π,π]. This family is L2-orthogonal. In particular,

〈φi,φj〉=
∫ π

−π
φi(x)φj(x) dx= πδij

〈φ0,φ0〉= π

2
The trigonometric polynomials are Tn = span(φ0, . . . ,φ2n−1). A general element of Tn takes the form

Sn(x) =
n∑
k=0

akφk(x) +
n−1∑
k=1

bkφn+k(x)

= a0
2 +an cos(nx) +

n−1∑
k=1

ak cos(kx) + bk sin(kx)

Theorem 15. For f ∈ L2, the Sn ∈ Tn minimizing the L2 error

E =‖f −Sn‖2L2 =
∫ π

−π

(
f(x)−Sn(x)

)2
dx

is defined by the coefficients

ak = 〈f,φk〉
〈φk,φk〉

= 1
π

∫ π

−π
f(x)cos(kx) dx

bk = 〈f,φn+k〉
〈φn+k,φn+k〉

= 1
π

∫ π

−π
f(x)sin(kx) dx

Proof. This follows from a previous theorem and integration.

The limit of Sn(x) as n→∞ is called the Fourier series (for f periodic in [−π,π]). In this case, E→ 0
as n→∞. In particular, S∞(x) = f(x) a.e for x ∈ (−π,π). This is also true in [−π,π] if f(π) = f(−π).

26

Discrete trigonometric approximation (and interpolation)

We will consider something similar to the Fourier series but with discrete data. Let {(xj ,yj)}2m−1
j=0 be

data points, where the xj are equally spaced in [−π,π] and take the form

xj =−π+
(j

2m
)
2π =−π+

(j
m

)
π j = 0, . . . ,2m−1

note that
x0 = 0, xm+1 = 1, x2m−1 = π− 1

m
< π

Consider the family of 2n vectors

ϕ0(x) =
~(1
2
)

=

1/2

...
1/2

 ∈ R2m n <m

ϕk(x) = cos(k~x) =

cos(kx0)

...
cos(kx2m−1)

 k = 1, . . . ,n

ϕn+k(x) = sin(k~x) =

sin(kx0)

...
sin(kx2m−1)

 k = 1, . . . ,n

If n=m, this becomes interpolation, and we define

ϕm(~x) = 1
2 cos(m~x) =

1
2 cos(mx0)

...
1
2 cos(mx2m−1)

 ∈ R2m

In the continuous case, we were minimizing

‖f −Sn‖L2 Sn(x) = a0
2 +an cos(nx) +

n−1∑
k=1

ak cos(kx) + bk sin(kx)

in the discrete case, we minimize

(y−Sn) · (y−Sn) =
2m−1∑
j=0

(
yj− (Sn)j

)2

where our ansatz is

Sn = a0
~(1
2
)

+
n−1∑
k=1

ak cos(kx) + bk sin(kx) if n <m

Sm = a0
~(1
2
)

+am
1
2 cos(m~x) +

n−1∑
k=1

ak cos(kx) + bk sin(kx) if n=m

27

Theorem 16. If n≤m, the discrete least squares approximation / interpolation is given by

ak = ϕk(x) ·y∥∥ϕk(x)
∥∥2 = 1

m
y · cos(k~x) = 1

m

2m−1∑
j=0

yj cos(kxj) k = 0, . . . ,n

bk = ϕn+k(x) ·y∥∥ϕn+k(x)
∥∥2 = 1

m
y · sin(k~x) = 1

m

2m−1∑
j=0

yj sin(kxj) k = 1, . . . ,n−1

Proof. It suffices to prove that ϕj(x) ·ϕk(x) =mδjk, except for ϕ0 (and ϕm when n=m), in which case
‖ϕ0‖22 =m/2 (and ‖ϕm‖22 =m/2). This amounts to showing that

0 =
~(1
2
)
· cos(k~x)

=
~(1
2
)
· sin(k~x)

= cos(kx) · cos(lx) k 6= l

= sin(kx) · sin(lx) k 6= l

= cos(kx) · sin(lx) ∀k, l

and that
m= cos(kx) · cos(kx) = sin(kx) · sin(kx)

we use the following lemma.

Lemma 3. For the uniformly spaced xj =−π+ k
mπ, j = 0, . . . ,2m−1, we have

~1 · sin(lx) =
2m−1∑
j=0

sin(lxj) = 0 l ∈ Z

~1 · cos(lx) =
2m−1∑
j=0

cos(lxj) =

0 l is not a multiple of 2m
2m l is a multiple of 2m

l ∈ Z

28

Proof of lemma. The trick is to consider eiz = cos(z) + isin(z). Then we have

~1 · (cos(lx) + sin(lx)) =~1 · (eilx) =
2m−1∑
j=0

eilxj

=
2m−1∑
j=0

eil(−π+ j
m
π)

=
2m−1∑
j=0

e−ilπeil
j
m
π

= e−ilπ
2m−1∑
j=0

(
eil

1
m
π︸ ︷︷ ︸

r

)j
= (−1)l

2m−1∑
j=0

rj

=

(−1)l 1−r2m

1−r r 6= 1
(−1)l2m r = 1

when l 6= 2mk, then r = eil
1
m
π 6= 1 and r2m =

(
eil

1
m
π
)2m

= ei2πl = 1 thus, we have that

~1 · (cos(lx) + sin(lx)) =

0 l 6= 2mk
2m l = 2mk for some k ∈ Z

The result follows from separately considering the real and imaginary components.

With this lemma, along with the equalities

sin(t1)sin(t2) = 1
2(cos(t1− t2)− cos(t1 + t2))

cos(t1)cos(t2) = 1
2(cos(t1− t2) + cos(t1 + t2))

sin(t1)cos(t2) = 1
2(sin(t1− t2) + sin(t1 + t2))

one can show that {cos(kx),sin(kx)}mk=0 are orthogonal. This is shown in Homework 6. For example,

cos(kx) · cos(lx) =~1 · 12
(

cos((k− l)x) + cos((k+ l)x)
)

= 0 k 6= l,k, l ∈ {0, . . . ,m}

cos(kx) · cos(kx) =~1 · 12
(
~1 + cos(2kx)

)
= 1

2(2m+ 0) =m

29

Lecture 12: 10/8

Discrete Fourier Transform (DFT)

Trigonometric interpolation is closely related with the discrete Fourier transform, which is ubiquitously
used in signal processing. For data y0, . . . ,yN−1 (generally assumed real-valued for our purposes), we
define the DFT (Y0, . . . ,YN−1) where

Yk =
N−1∑
j=0

yje
−i2πk j

N k = 0, . . . ,N −1

the Yk are the frequency components and are in general complex-valued. In fact, for k= 0, . . . ,m=N/2,
it holds that

ak = 1
m

(−1)k<(yk)

bk =− 1
m

(−1)k=(yk)

the continuous Fourier transform applies to real functions f , and the frequency components are given by

f̂(k) =
∫ ∞
−∞

f(t)e−i2πkt dt

note that the j
N in the DFT is analogous to time t integrated over in the Fourier transform. The Fourier

series coefficients (for periodic f) are

f̂(k) = 1
2π

∫ π

−π
f(x)e−ikx dx

The inverse discrete Fourier transform (IDFT) of frequencies Y0, . . . ,N is defined

yj = 1
N

N−1∑
k=0

Yke
i2πk j

N j = 0, . . . ,N

Computed naively, the DFT costs O(N2) operations.

Note also that DFT is polynomial evaluation. To see this, note that

Yk =
N−1∑
j=0

yj
(
e−i2πk

1
N︸ ︷︷ ︸

zk

)j
= PN−1(zk)

where PN−1 is the polynomial

PN−1(z) =
N−1∑
j=0

yjz
j

More importantly, the DFT is a matrix-vector multiply

Yk =
N−1∑
j=0

yj
(
e−i2π

1
N︸ ︷︷ ︸

ωN

)kj

=
N−1∑
j=0

Akjyj where Akj = ωkjN

30

Y0
...

YN−1

=

1 1 . . . 1
1 ωN . . . ωN−1

N
...

...
1 ωN−1

N . . . ω
(N−1)2

N

︸ ︷︷ ︸

FN

y0
...

yN−1

Note that FN is symmetric, complex valued, but dense.

Fast Fourier Tranform (FFT)

Different lists of top 10 algorithms of the 20th century all include the FFT. The FFT computes the DFT
in O(N log(N)) operations. The idea is to write FN as the product of sparser matrices ina recursive way.

Example 0.6. Take N = 6, and let ω = ω6 = e−i2π
1
6 . ω is the primitive 6th root of unity, ω6 = 1. Thus,

ω6+l = ωl for any l. We have our matrix

F6 =

1 1 . . . 1
1 ω . . . ω5

... . . .
1 ω5 . . . ω25

For N = 3, we have

F3 =

1 1 1
1 ω3 ω2

3
1 ω2

3 ω4
3

Thus, we can write

F3 =

1 1 1
1 ω2 ω4

1 ω4 ω8

31

F6 =

1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5

1 ω2 ω4 ω6 ω8 ω10

1 ω3 ω6 ω9 ω12 ω15

1 ω4 ω8 ω12 ω16 ω20

1 ω5 ω10 ω15 ω20 ω25

=

1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5

1 ω2 ω4 ω6 ω8 ω10

1 ω3 1 ω3 1 ω3

1 ω4 ω2 ω6 ω4 ω8

1 ω5 ω4 ω9 ω8 ω13

=

1 1 1 1 1 1
1 ω2 ω4 ω ω3 ω5

1 ω4 ω8 ω2 ω6 ω10

1 1 1 ω3 ω3 ω3

1 ω2 ω4 ω4 ω6 ω8

1 ω4 ω8 ω5 ω9 ω13

1
1

1
1

1
1

putting odd columns first

=
[
F3 D1F3
F3 D2F3

]
P

(1)
N D1 =

1
ω

ω2

 D2 =

ω3

ω4

ω5

=−D1

=
[
I D1
I −D1

]
︸ ︷︷ ︸

S(1)

[
F3 0
0 F3

]
︸ ︷︷ ︸

F
(1)
6

P
(1)
N

Note that this final multiplication is of sparse matrices, and can be done quickly.

If N = 2r, then

Y = Fny =
[
IN/2 DN/2
IN/2 −DN/2

][
FN/2

FN/2

]
P

(1)
N y

Applying P (1)
N y takes N multiplications, applying F (1)

N takes 2 ·
(
N
2

)2
= N2

2 multiplications, and applying

S
(1)
N takes 2N multiplications. Overall, there are 3N +N2/2 multiplications. By recursion, we have

3N + 2
(
3(N/2) + 2(N/4)2

)
= 6N = N2

4

6N + 4
(
3(N/4) + 2(N/8)2

)
= 9N + N2

8
...

...

r steps: 3rN + N2

2r = 3log2(N)N + N2

N
=N + 3log2(N)N

If N 6= 2r, modifications must be made, but the ideas are similar. There is an analogous algorithm for
the IDFT, known as the IFFT.

32

Lecture 13: 10/10

Numerical Differentiation

We wish to compute the derivative

f ′(x0) = lim
h→0

f(x0 +h)−f(x0)
h

We have an obvious approximation

f ′(x0)≈ f(x0 +h)−f(x0)
h

h� 1

This approximation is unstable, cancellation and round-off errors hurt it.

More rigorously, for numerical differentiation, we consider stencils, sets of nodes (often uniformly spaced),
about x0. We use Taylor’s theorem with f ∈ C2[a,b] for x0 ∈ [a,b].

f(x0 +h) = f(x0) +f ′(x0)h+ 1
2f
′′(ξ)h2 ξ between x0 and x0 +h

This gives that

f ′(x0) = f(x0 +h)−f(x0)
h

− f
′′(ξ)h

2
Thus, here we have the truncation error

τ = f ′(x0)− f(x0 +h)−f(x0)
h

= −f
′′(ξ)h
2

and is bounded by

|τ | ≤
‖f‖∞,[x0,x0+h]

2 |h|

τ is O(h). Here, we say our formula (or approximation) is O(h). Clearly, h→ 0 =⇒ τ → 0. This is a
good approximation mathematically, but faces issues when comptued on a computer. The approximation
is called forward difference if the limit is taken from the right, and backward difference if the limit
is taken from the left, where the approximation is

f ′(x0)≈ f(x0)−f(x0−h)
2

These are called two point formulas.

Three point formulas use a 3 point stencil. They are designed to be O(h2) (assuming higher regularity
of f). If we have a stencil x0,x0−h,x0 +h, then we derive the midpoint formula. Assume for now that
f is smooth, so

f(x0 +h) = f(x0) +f ′(x0)h+ h2

2 f
′′(x0) + h3

6 f
′′′(x0) + . . .

f(x0−h) = f(x0)−f ′(x0)h+ h2

2 f
′′(x0)− h

3

6 f
′′′(x0) + . . .

f(x0 +h)−f(x0−h) = 2f ′(x0)h+ +2h
3

6 f
′′′(x0) + . . .

33

If f ∈ C3[a,b], then (with some additional arguments to show that a ξ can be found)

f(x0 +h)−f(x0−h) = 2f ′(x0)h+ 2h
3

6 f
′′′(ξ)

Rearranging, we get

f ′(x0) = f(x0 +h)−f(x0−h)
2h − h

2

6 f
′′(ξ)

So that our truncation error is
τ = −f

′′′(ξ)
6 h2 =O(h2)

This approximation is called the 3 point midpoint formula (also called centered differences). It
requires data on both sides of x0.

We also have endpoint formulas, where the stencil is of the form x0,x0 +h,x0 + 2h. Then we have

f(x0 + 2h) = f(x0) + 2hf ′(x0) + 4h2

2 f ′′(x0) + 8h3

6 f ′′′(x0) + . . .

f(x0 +h) = f(x0) +hf ′(x0) + h2

2 f
′′′(x0) + h3

6 f
′′′(x0) + . . .

Again, we want to cancel the quadratic terms. In this case, we have

4f(x0 +h)−f(x0 + 2h) = 3f(x0) + 2hf ′(x0)−2h
3

3 f
′′′(x0) + . . .

Thus, we rearrange to get (again with the arguments for existence of ξ)

f ′(x0) = −3f(x0) + 4f(x0 +h)−f(x0 + 2h)
2h + h3

3 f
′′′(ξ)

Thus, our 3 point endpoint formula is

f ′(x0) = −3f(x0) + 4f(x0 +h)−f(x0 + 2h)
2h

so our truncation error
τ = h3

3 f
′′′(ξ) =O(h3)

note that the centered differences truncation error has a nicer constant, that is half of this truncation
error. This is due to the power of having information on both sides of the function.

The ideas behind these derivations extend to 5-point formulas and different stencils. Note the convenience
of having uniformly spaced stencils, since the Taylor series at the different points of the stencil align.

Now, suppose we want an approximation of f ′′(x0). We want an approximation of this given only
evaluations of f on a stencil (no evaluation of f ′).

f(x0 +h) = f(x0) +f ′(x0)h+f ′′(x0)h
2

2 +f ′′′(x0)h
3

6 +f ′′′′(x0)h
4

24 + . . .

f(x0−h) = f(x0)−f ′(x0)h+f ′′(x0)h
2

2 −f
′′′(x0)h

3

6 +f ′′′′(x0)h
4

24 + . . .

f(x0 +h) +f(x0−h) = 2f(x0) + 2f ′′(x0)h
2

2 +f (4)(x0)h
4

24 + . . .

f ′′(x0) = f(x0 +h)−2f(x0) +f(x0−h)
h2 − h

2

12f
(4)(ξ) ξ ∈ [x0−h,x0 +h]

The approximation on the left is called the second derivative midpoint formula.

34

Lecture 14: 10/22

Numerical differentiation by the techniques presented in the last lecture is unstable. This can be seen
for instance by computing the relative error in the forward difference formula of sin(x). As h decreases
from 1, the relative error decreases linearly, but then at small enough h the relative error increases as h
decreases. Other approximations to the derivative using more points also face this issue, but the relative
error increases at a lower rate.

Recall that theoretically, the truncation error τ converges to 0 as h→ 0, which suggests convergence of
the approximation to f ′(x0). However, this is only truly true in exact arithmetic.

Let f(x0) = f(x0)+ ε1, where f(x0) is the computer representation, and |ε|< εmach. Likewise, say f(x0 +
h) = f(x0 +h) + ε2. Then we have that

f ′(x0) = f(x0 +h) + ε2− (f(x0) + ε1)
h

+ f ′′(ξ)
2 h

Note that the approximation as computed on a computer is (we assume the computer operations are
exact now for simplicity)

f(x0 +h)−f(x0)
h

The error is then ∣∣∣∣∣f ′(x0)− f(x0 +h)−f(x0)
h

∣∣∣∣∣≤ |ε1|+|ε2|h
+ h

2

∣∣∣f ′′(ξ)∣∣∣
Thus, the upper bound on the approximation error is

2ε
h

+ h

2

∥∥∥f ′′∥∥∥
∞,[x0,x0+H]

fixed H > h

This goes to infinity as h→ 0. Thus, we have no guarantee that the approximation converges to f ′(x0).

We can minimize the upper bound, by differentiating in h. The minimizing h is

h∗ =
√

4ε
‖f ′′‖∞,[x0,x0+H]

Below this h∗, the upper bound grows to infinity. Often times, the optimal h is not possible to compute,
due to for instance being unable to compute the sup-norm of f .

Numerical differentiation is unstable, so we generally try to avoid it. Unfortunately, finite difference
methods rely on numerical differentiation. Numerical integration does not suffer from these instabilities.

Numerical integration

The most basic way to integrate a function numerically is to use numerical quadrature. The generic
approximation is ∫ b

a
f(x) dx≈

n∑
j=0

wjf(xj)

The wj are integration weights, and the xj are integration nodes.

35

Given a choice of integration nodes x0, . . . ,xn, we know that f(x)≈ Pn(x) =
∑n
j=0 f(xj)Lj(x). It makes

sense to have ∫ b

a
f(x) dx≈

∫ b

a
Pn(x) ;dx

=
n∑
j=0

f(xj)
∫ b

a
Lj(x) dx︸ ︷︷ ︸
wj

Notice that f = Pn as functions if f ∈ Rn[x]. Thus, the quadrature formula is exact in this case. When
f /∈ Rn[x], we use the interpolation error theorem. Say f ∈ Cn+1[a,b]. Recall that the theorem states

f(x) =
n∑
j=0

f(xj)Lj(x) + f (n+1)(ξ)
(n1)! W (x) W (x) =

n∏
j=0

(x−xj)

Then we have that ∫ b

a
f(x) dx=

n∑
j=0

f(xj)wj(x) + 1
(n+ 1)!

∫ b

a
f (n+1)(ξ(x))W (x) dx︸ ︷︷ ︸

E(f)

Choosing equally spaced nodes for n = 1,2 yield the trapezoidal and Simpson’s rules, respectively. The
trapezoidal variant has x0 = a, x1 = b, and∫ b

a
f(x) dx=

∫ b

a

x− b
a− b

f(a) + x−a
b−a

f(b) dx+E(f)

= (x− b)2

2(a− b)
]b
a
f(a) + (x−a)2

2(b−a)
]b
a
f(b) +E(f)

= −(a− b)
2︸ ︷︷ ︸
w0

f(a) + b−a
2︸ ︷︷ ︸
w1

f(b) +E(f)

= b−a
2
(
f(a) +f(b)

)
+E(f)

Now, we compute E(f) for the trapezoidal method

E(f) = 1
2

∫ b

a
f ′′(ξ(x))(x−a)(x− b) dx

Note that (x−a)(x− b) does not change sign in [a,b]. Thus, we can apply the mean-value theorem for
integrals, to see that

E(f) = 1
2f
′′(η)

∫ b

a
(x−a)(x− b) dx η ∈ [a,b]

= 1
2f
′′(η)−(b−a)3

6

= −h
3

12 f ′′(η) h= b−a

Geometrically, the trapezoidal method integrates the trapezoid with two vertical sides at a and b, a side
connecting a and b on the x-axis, and a side connecting the points of function evaluation.

36

Now, we do the same with Simpson’s rule. The nodes are x0 = a,x1 = a+b
2 = x0 +h,x2 = b = x0 + 2h,

where h= b−a
2 . This looks like a stencil as used in numerical differentiation.

∫ b

a
f(x) dx=

∫ x2

x0

(x−x1)(x−x2)
(x0−x1)(x0−x2)f(x0) +L1(x)f(x1) +L2(x)f(x2) dx +∫ x2

x0

(x−x0)(x−x1)(x−x2)
6 f ′′′(ξ(x)) dx

After some (messy) computations, we have∫ b

a
f(x) dx= h

3 (f(x0) + 4f(x1) +f(x2))− h
5

90f
(4)(ξ)︸ ︷︷ ︸

E(f)

This error E(f) is derived using Taylor expansions. Simpson’s rule is the approximation

h

3 (f(x0) + 4f(x1) +f(x2))

Note that the stricter error bound E(f) contains an evaluation of the fourth derivative f (4)(ξ). This
means that not only are quadratic f integrated perfectly by this rule, but also cubic f are integrated
perfectly, since the fourth derivative vanishes.

Lecture 15: Newton-Cotes and Gaussian Quadrature (10/24)

Closed Newton-Cotes formulas

Say we have n+1 equidistant integration nodes in [a,b], including the endpoints, a= x0 <x1 < .. . < xn = b.
xj = x0 + jh, h= b−a

n , j = 0, . . . ,n. Our quadrature rule is
∫ b
a f(x) dx=

∑n
j=0wjf(xj).

At n= 1, we have the trapezoidal rule∫ b

a
f(x) dx= h

2 (f(x0) +f(x1))− h
3

12f
′′(ξ)

is exact for f ∈ R1[x].

For n= 2, we have Simpson’s rule∫ b

a
f(x) dx= h

3 (f(x0) + 4f(x1) +f(x2))− h
5

90f
(4)(ξ)

is exact for f ∈ R3[x].

For n= 3, we have Simpson’s 3/8 rule∫ b

a
f(x) dx= 3h

8 (f(x0) + 3f(x1) + 3f(x2) +f(x3))− 3h5

80 f
(4)(ξ)

is exact for f ∈ R3[x].

These cases motivate the definition of the degree of accuracy or degree of precision of a quadrature
rule/ formula. This is defined as the largest integer n ∈ N such that the formula is exact for f ∈ Rn[x].

37

Theorem 17 (General closed Newton-Cotes).

When n is odd and f ∈ Cn+1[a,b],∫ b

a
f(x) dx=

n∑
j=0

wjf(xj) + hn+2f (n+1)(ξ)
(n+ 1)!

∫ n

0
t(t−1) · · ·(t−n) dt

When n is even and f ∈ Cn+2[a,b],∫ b

a
f(x) dx=

n∑
j=0

wjf(xj) + hn+3f (n+2)(ξ)
(n+ 2)!

∫ n

0
t2(t−1) · · ·(t−n) dt

When n is odd, the degree of precision is n, and when n is even, the degree of precision is n+ 1.

Open Newton-Cotes

Now, as integration nodes, we take n+1 equidistant nodes without the endpoints. xj = x0 +jh, x0 = a+h,
h= b−a

n+2 , for j = 0, . . . ,n.

At n= 0, we have the midpoint rule∫ b

a
f(x) dx= 2hf

(a+ b

2
)

+ h3

2 f
′′(ξ)

In practice, it is possible that b� a, in which case equidistant nodes may lead to high order interpolants
that oscillate wildly (e.g. for the Runge function). This motivates the method of composite integration,
where [a,b] is broken into subintervals, and the approximate integral over [a,b] is taken as the sum of
approximate integrals over the subintervals. Low-order rules are used for each subinterval. For instance,
the composite trapezoidal rule is of the form∫ b

a
f(x) dx=

n−1∑
j=0

∫ xj+1

xj

f(x) dx

=
n−1∑
j=0

h

2
(
f(xj) +f(xj+1)

)

= h

2
(
f(x0) + 2

n−1∑
j=1

f(xj) +f(xn)
)

This is the basic idea behind trapz in MATLAB (although MATLAB’s implementation also has opti-
mizations such as choosing intervals of different lengths). Using the intermediate value theorem, it can
be shown that there exist some µ ∈ [a,b] such that

∫ b

a
f(x) dx= h

2
(
f(x0) + 2

n−1∑
j=1

f(xj) +f(xn)
)
− (b−a)h2

12 f ′′(µ)

We have a similar error bound for composite Simpson’s rule. Assuming n is even,

∫ b

a
f(x) dx= h

3
(
f(x0) + 2

n/2−1∑
j=1

(
f(x2j)

)
+ 4

n/2∑
j=1

(
f(x2j−1)

)
+f(xn)

)
− (b−a)h4

180 f (4)(µ)

38

Composite integration rules are numerically stable to round-off error. Say we have f(xj) = f(xj) + εj ,
where f(xj) is a machine representation and all

∣∣εj∣∣< ε are bounded. Then the total round-off error for
the composite trapezoidal rule is

≤ εT = nhε= n
(b−a)
n

ε= (b−a)ε

so that as h→ 0, the upper bound on the error is constant, and does not blow up. Round-off error does
not increase as more points are added, meaning the procedure is stable.

Now, say we have a function that has very particular local behavior, such as when a function is mostly
small but has a small neighborhood of oscillation. We can use adaptive quadrature, in which we
repeat the computation on a given interval with twice as many nodes. By utilizing information about
error bounds, one can determine which subintervals need more subdivisions in order to achieve custom
overall accuracy.

Efficient algorithms exist that calculate integrals within a specified user tolerance.

Gaussian quadrature

This approach to quadrature attempts to maximize the degree of precision (DOP) of an integration rule.
First, there does not exist any quadrature rule

∫ 1
−1 f(x) dx =

∑n
j=0wjf(xj) with DOP 2n+ 2 (this is

proven in the homework). Gauss-Legendre quadrature achieves a DOP of 2n+ 1, so it is optimal in this
sense.

Theorem 18. Given x0, . . . ,xn be the roots of the Legendre polynomial of degree n+1, Pn+1. Then, the
Gauss-Legendre quadrature rule∫ 1

−1
f(x) dx=

n∑
j=0

wjf(xj) wj =
∫ 1

−1
Lj(x) dx

has optimal DOP 2n+ 1.

Proof. First consider g ∈Rn[x], so it is equal to its interpolant, meaning the Gauss-Legendre quadrature
has DOP at least n, because ∫ 1

−1

∑
j

Lj(x)g(xj) dx=
∫ 1

−1
g(x) dx

Now, consider f ∈R2n+1[x]. Divide by pn+1(x), the n+1th Legendre polynomial, so f(x) = q(x)pn+1(x)+
r(x) for q(x), r(x) ∈ Rn[x]. Thus, we have∫ 1

−1
f(x) dx=

∫ 1

−1
q(x)pn+1(x) + r(x) dx

=
∫ 1

−1
q(x)pn+1(x) dx+

∫ 1

−1
r(x) dx

= 0 +
∫ 1

−1
r(x) dx orthogonality, q ∈ span(p0, . . . ,pn)

=
n∑
j=0

wjr(xj) r ∈ Rn[x]

39

Moreover, we have that pn+1(xj) = 0, so f(xj) = r(xj). Thus,∫ 1

−1
f(x) dx=

n∑
j=0

wjr(xj)

Note that the Gauss-Legendre quadrature rule has the same weights as Newton-Cotes, but has differently
spaced nodes.

Lastly, the error bound is very strong∣∣∣∣∣∣
∫ b

a
f(x) dx−

n∑
j=0

wjf(xj)

∣∣∣∣∣∣≤ (b−a)2n+1n!4

(2n+ 1)!(2n)!3
∥∥∥f (2n)

∥∥∥
∞

Lecture 16: Clenshaw-Curtis (10/29)

We can use quadrature rules to integrate over any interval [a,b]⊆R. However, usually quadrature points
and weights are givne in [−1,1] for convenience. To use these weights for integrating over [a,b], we simply
use a linear transform on our inputs t ∈ [−1,1]

x(t) = 1
2
(
(a+ b) + (b−a)t

)
∈ [a,b]

Then we have dx= (b−a)
2 dt, so our integral is∫ b

a
f(x) dx=

∫ 1

−1
f
(
x(t)

) (b−a)
2 dt

=
∫ 1

−1
f
(1

2((a+ b) + (b−a)t)
) (b−a)

2 dt

≈
n∑
j=0

w̃j
(b−a)

2︸ ︷︷ ︸
wj

f(x(tj)︸ ︷︷ ︸
xj

)

where w̃j are weights in [−1,1], and tj are integration points in [−1,1].

Clenshaw-Curtis

Usual quadrature assumes that f(x) ≈
∑n
j=0Lj(x)f(xj), meaning that f is closely approximated by its

polynomial interpolant. Under this assumption, one can expect∫ 1

−1
f(x) dx≈

n∑
j=0

(∫ 1

−1
Lj(x) dx

)
f(xj)

and the formula is exact for f ∈ Rn[x]. Computing the wj and xj generally takes O(n2).

We rewrite this formula alternatively. Given x0, . . . ,xn, we want that∫ 1

−1
f(x) dx=

n∑
j=0

wjf(xj) ∀f ∈ Rn[x]

40

[
f(x0) . . . f(xn)

]
w0
...
wn

=
∫ 1

−1
f(x) dx ∀f ∈ Rn[x]

Due to linearity of the integral, it suffices to consider a basis for Rn[x]. For the canonical basis, the
requirement is

1 . . . 1
x0 . . . xn
...

...
xn0 . . . xnn

w0
w1
...
wn

=

∫ 1
−1 dx∫ 1
−1x dx

...∫ 1
−1x

n dx

This transposed Vandermonde system can be solved to get the weights, but this method is numerically
unstable, and can also be slower than the direct formula

∫ 1
−1Lj(x) dx.

If we instead use the Chebyshev basis, we get stability for certain choices of points. The system is
T0(x0) . . . T0(xn)
T1(x0) . . . T1(xn)

...
...

Tn(x0) . . . Tn(xn)

w0
w1
...
wn

=

∫ 1
−1T0 dx∫ 1
−1T1 dx

...∫ 1
−1Tn dx

The set of nodes that make this linear system well-conditioned are the Chebyshev points of the first kind
i.e. the roots of Tn+1. With this choice of nodes and weights, we have Fejér quadrature. Here we have
CTw = b, so w = C−T b which is simply an IDCT of b. Thus, the weights can be computed in O(n logn)
time. Moreover, xj can be computed in O(n) time with their exact formulas.

Fejér’s second quadrature takes all roots of Un+1 (where Un = T ′n+1
n). This is the extrema of Tn+1

besides the endpoints. Clenshaw-Curtis quadrature chooses Chebyshev points of the second type i.e.
all extrema of Tn including endpoints. The exact form of these are xj = cos

(
j
nπ
)
, j = 0, ldots,n.

The linear system for Clenshaw-Curtis is C̃Tw = b where C̃T is almost a DCT of type 1, up to a scaling

by D =

1/2

1
. . .

. The system is DC̃Tw = Db. Since DCT is involutory, w = DCTDb, which can

also be computed in O(n logn).

Clenshaw-Curtis quadrature integration points are nested. This means that when refining a mesh, we can
choose a refinement so that the function need not be reevaluated on all of the nodes again. This property
is particularly advantageous for adaptive quadrature and higher-dimensional integrals. Integration points
and weights are computed in O(n logn) which of course scales very well for large n. However, the degree
of precision is only n. Thus, Gauss-Legendre is twice as good at integrating polynomials. For general
functions, sometimes Gauss-Legendre and Clenshaw-Curtis are comparable (e.g. for integrating |x|). For
analytic functions, Gauss-Legendre is often better for a given n.

Recently (Townsend 2013; Bogaert 2014) showed how to compute wj and xj for Gauss-Legendre in O(n)
operations (by using asymptotic expansions). In practice, computing the weights and nodes is not done
often. For instance, using composite integration, quadrature with low n can be used for each subinterval.
Also, integration points and weights are precomputed in [−1,1] and tabulated.

41

Finally, we briefly discuss integration in multiple dimensions. We use cubature rules. We have a basic
approximation (for integrating over a rectangle in R2)∫ d

c

∫ b

a
f(x,y) dx dy ≈

∫ d

c

n∑
j=0

w
(a,b)
j f(xj ,y) dy

≈
n∑
k=0

n∑
j=0

w
(c,d)
k w

(a,b)
j f(xj ,yk) dy

=
(n+1)2−1∑

l=0
wlf(zl)

Integrating over non-rectangular regions is more difficult. Sometimes there are direct formulas for certain
types of regions. Another way to do this is to discretize a given region into quadrilaterals. To integrate
over a general quadrilateral A, use a bilinear transform to map the region into a rectangle.∫

A
f(x,y) dA=

∫ b

a

∫ d

c
f(u,v)J(u,v) du dv

In a similar way, one can mesh the region by triangles, and then integrate the triangles. Another method is
to directly map A by a nonlinear transform into some rectangle. These methods may be more complicated
to deal with issues such as singularities at the boundaries.

Lecture 17: (10/31)

Initial value problems

Many phenomena in engineering and science can be modelled by differential equations. We have the
following general form for a first order ordinary differential equation

dy

dt
= f(t,y) t ∈ [a,b]

y(a) = α

we often think of the parameter t as time, and f : R2→R is a general function that is possibly nonlinear.
y(a) = α is called the initial condition. We want to solve for y(t), so our solution is a function of only t,
meaning that the equation is a first order ODE. This structure can be generalized for systems of ODEs
and high-order ODEs. We want to solve this equation numerically to obtain some approximations

w0 = y(t0), w1 ≈ y(t1), . . . , wN ≈ y(tN)

at times a= t0 < t1 < .. . < tN = b. If an approximate solution is desired at an intermediate time, we can
use some interpolation scheme to evaluate it. The times are often chosen to be equally spaced.

Definition 0.6. A function f(t,y) is Lipschitz on y in D ⊆ R2 if there exists a L > 0 such that∣∣f(t,y2)−f(t,y1)
∣∣≤ L|y2−y1| ∀(t,y1),(t,y2) ∈D

Example 0.7. f(t,y) = t|y| for a domain D = {(t,y) | t ∈ [1,2], y ∈ [−3,4]} satisfies∣∣f(t,y2)−f(t,y1)
∣∣= ∣∣t(|y2|−|y1|)

∣∣
≤ t|y2−y1|
≤ 2|y2−y1|

42

Theorem 19. Let f(t,y) be defined on a convex domain D ⊂ R2. If a constant L > 0 exists such that∣∣∂yf(t,y)
∣∣≤ L ∀(t,y) ∈D

then f is Lipschitz in y with Lipschitz constant L.

Theorem 20. Let D= {(t,y) | t∈ [a,b], y ∈R}= [a,b]×R, and f(t,y)∈C0(D) (meaning f is continuous).
If f is Lipschitz in y, then the IVP

y′(t) = f(t,y) t ∈ [a,b]
y(a) = α

has a unique solution y(t) for all t ∈ [a,b] (and is well-posed).

Example 0.8. Say we have the problem

y′(t) = 1 + tsin(ty) 0≤ t≤ 2
y(0) = 0

Then we compute ∣∣∂y(1 + tsin(ty))
∣∣= ∣∣∣t2 cos(ty)

∣∣∣
≤ t2

≤ 4

so that f is Lipschitz by our above theorem. This means that the IVP has a unique solution.

Well-posedness of an ODE is often defined in the sense of Hadamard

1. A unique solution exists.

2. Solution depends continuously on initial data.
This can be taken to mean that the solution satisfies some stability bounds measuring how much
the solution is perturbed when the initial data is perturbed.

Definition 0.7. The course text gives a definition—The IVP y′(t) = f(t,y), t ∈ [a,b] with y(a) = α is
well-posed if

1. A solution y(t) for t ∈ [a,b] exists and is unique.

2. ∃ε0 > 0 and ∃k > 0 such that ∀ε ∈ (0, ε0) and ∀δ(t) ∈ C0[a,b] with ‖δ‖∞ < ε, and ∀δ0 such that
|δ0|< ε, the perturbed IVT

z′(t) = f(t,z) + δ(t) t ∈ [a,b]
z(a) = α+ δ0

has a unique solution satisfying
‖z−y‖∞ < kε

(note that here k is the stability constant and represents the conditioning of the problem.)

43

Euler’s method

Euler’s method is the most elementary method to solve initial value problems.

y′(t) = f(t,y) t ∈ [a,b]
y(a) = α

Usually, we take an equally spaced mesh for t ∈ [a,b].

ti = a+ ih i= 0, . . . ,N

h= b−a
N

= ti+1− t

h is called the step size. There are two ways of thinking about Euler’s method.

y′(ti)≈
y(ti+1)−y(ti)

h
y(ti+1)−y(ti)

h
≈ f(ti,y(ti))

y(ti+1)≈ y(ti) +hf(ti,y(ti))

Note that with the initial condition, we have y(t0), so we have a valid base case. The truncation error is

τ = y(ti+1)−y(ti)
h

−f(ti,y(ti))

If |τ |→ 0 as h→ 0, then the method is said to be consistent. In this case, the resulting numerical scheme
converges to the original equation. Note that the truncation error measures the error in the numerical
scheme, meaning only at the mesh points, and not the error of the resulting approximation of the solution
to the DE.

Lecture 18: (11/5)

Here we show the consistency of Euler’s method using a Taylor expansion

y(ti+1) = y(ti+h)

= y(ti) +hy′(ti) + h2

2 h
′′(ξi) ξi ∈ [ti, ti+1]

= y(ti) +hf(ti,y(ti)) + h2

2 h
′′(ξi)

Then we have a truncation error of

τ = y(ti+1)−y(ti)
h

−f(ti,y(ti))

= h

2 y
′′(ξi)

=O(h)

44

assuming that y′′ is bounded. This means that |τ | → 0 as h→ 0 under the given conditions. Thus, our
explicit Euler’s method numerical scheme is

w0 = α

wi+1 = wi+hf(ti,wi) i= 0, . . . ,N −1

Such schemes are called time-stepping schemes, and the formula for how to move forward is called the
difference equation. We hope that wi ≈ y(ti) and that

∣∣wi−y(ti)
∣∣→ 0 as h→ 0.

Lemma 4. For x≥−1 and m> 0
(1 +x)m ≤ emx

Proof. Taylor’s theorem with ex gives

ex = 1 +x+ 1
2x

2eξ

ex ≥ 1 +x

emx ≥ (1 +x)m

Lemma 5. For s, t > 0, and a0, . . . ,ak wth a0 >
−t
s , ai+1 ≤ (1 +s)ai+ t for i= 0, . . . ,k−1. Then

ai+1 ≤ e(i+1)s
(
a0 + t

s

)
− t

s

Proof. Note that

ai+1 ≤ (1 +s)ai+ t

≤ (1 +s)
(
(1 +s)ai−1 + t

)
+ t

≤ (1 +s)i+1a0 +
(
1 + (1 +s) + . . .+ (1 +s)i)t

= (1 +s)i+1a0 + 1− (1 +s)i+1

1− (1 +s) t

= (1 +s)i+1a0 + (1 +s)i+1−1
s

t

= (1 +s)i+1
(
a0 + t

s

)
− t

s

≤ e(i+1)s
(
a0 + t

s

)
− t

s
previous lemma

Theorem 21. Let f continuous, Lipschitz on y in the domain D = [a,b]× (−∞,∞). Let y be the unique
solution to the IVP

y′(t) = f(t,y)
y(a) = α

45

Suppose that y ∈ C2[a,b] and
∥∥y′′∥∥∞ =M <∞. Moreover, let w0, . . . ,wN be the Euler approximations to

y(t0), . . . ,y(tN), where the tj are taken evenly spaced with spacing h. Then

∣∣y(ti)−wi
∣∣≤ hM

2L
(
eL(ti−a)−1

)
i= 0, . . . ,N

where L is the Lipschitz constant of f .

Proof. There is nothing to show for i= 0. For i > 0, we have

y(ti+1) = y(ti) +hf(ti,y(ti)) + h2

2 y
′′(ξ)

wi+1 = wi+hf(ti,wi)∣∣y(ti+1)−wi+1
∣∣≤ ∣∣y(ti)−wi

∣∣+h
∣∣f(ti,y(ti))−f(ti,wi)

∣∣+ h2

2

∣∣∣y′′(ξi)∣∣∣
≤
∣∣y(ti)−wi

∣∣+hL
∣∣y(ti)−wi

∣∣+ h2

2

∣∣∣y′′(ξi)∣∣∣
≤ (1 + hL︸︷︷︸

s

)
∣∣y(ti)−wi

∣∣︸ ︷︷ ︸
ai

+Mh2

2︸ ︷︷ ︸
t

Now, we apply the lemma to see

∣∣y(ti+1)−wi+1
∣∣≤ e(i+1)hL

(h2M

2hL
)
− h

2M

2hL

≤ hM

2L
(
e(i+1)hL−1

)
≤ hM

2L
(
e(ti+1−a)L−1

)
(i+ 1)h= ti+1

Thus, as h→ 0, we have that yti → wi, since the bound is linear in h. However, this derivation was done
in exact arithmetic. We now take round-off error into account. Then we have steps

u0 = α+ δ0

ui+1 = ui+hf(ti,ui) + δi+1

where δi < δ for each i. Then we have the bound

∣∣y(ti)−ui
∣∣≤ 1

L

(hM
2 + δ

h

)(
eL(ti−a)−1

)
+ δ
(
eL(ti+a)

)
Note that there is a term δ

h , so as h→ 0 the bound explodes.

46

Higher order approximation

For the same initial value problem, we can look at higher order approximations by using higher order
Taylor terms

y(ti+1) = y(ti) +hy′(ti) + . . .+ hn

n! y
(n)(ti) + hn+1

(n+ 1)!y
(n+1)(ξi)

= y(ti) +hf(ti,yi) + . . .+ hn

n! f
(n−1)(ti,yi)(ti) + hn+1

(n+ 1)!f
(n)(ξi,y(ξi))

= y(ti) +hT (n)(ti,yi) +O(hn+1)

y(ti+1)−y(ti)
h

= f(ti,yi) + . . .+ hn−1

n! f (n−1)(ti,yi) + hn

(n+ 1)!f
(n)(ξi,y(ξi))

This means that

y(tI+1)−y(ti)
h

−T (n)(ti,yi) =O(hn)

so that a numerical scheme using these higher order terms converges in O(hn). A high-order Taylor
method is of the form

w0 = 0
wi+1 = wi+hT (n)(ti,wi) i= 0, . . . ,N −1

This is Euler’s method when n= 1. The truncation error is O(hn) for y ∈ Cn+1([a,b]).

However, this requires computation of the derivatives of f , which may be expensive and/or introduce
significant round-off errors (recall that numerical differentiation is unstable). Thus, we desire a scheme
with a rapidly decaying truncation error that does not require evaluation of derivatives of f . This brings
us to Runge-Kutta methods.

Runge-Kutta methods

We make use of higher dimensional Taylor’s theorem

Theorem 22 (Taylor). Suppose f ∈ Cn+1(D) where D = [a,b]× [c,d]. Let (t0,y0) ∈ D. Then for all
(t,y) ∈D, there exists some ξ between t0 and t and µ between y0 and y such that

f(t,y) = Pn(t,y) +Rn(t,y)

Pn(t,y) = f(t0,y0) + (t− t0)∂tf() + (y−y0)∂yf()+
(t− t0)2

2 ∂ttf() + (t− t0)(y−y0)∂tyf() + (y−y0)2∂yyf() + . . .+ nth derivative terms

Rn(t,y) = 1
(n+ 1)!

n∑
j=0

(
n+ 1
j

)
(t− t0)n−j+1(y−y0)j(∂tn−j+1yjf)(ξ,µ)

47

Lecture 19: Runge-Kutta methods (11/7)

As can be shown through experiments with the simplest IVP y′(t) = βy(t), y(0) = α, when h is not small
enough the computed solution can oscillate. Forward Euler’s method is unstable in these cases. We will
see that these issues can be alleviated with Runge-Kutta methods and backward Euler.

The idea behind Runge-Kutta methods is to substitute the Taylor polynomial T (n)(ti,wi) with something
involving only f (not its derivatives), but still maintaining O(hn) truncation error τ . We first develop
order two Runge-Kutta

T (2)(t,y) = f(t,y) + h

2 f
′(t,y)

we would like this to be equal to something satisfying the ansatz

a1f(t+α1,y+β1) +O(h2)

First, we have

f ′(t,y) = d

dt
f(t,y(t))

= ∂tf∂tt+∂yf∂ty chain rule
= ∂tf(t,y(t)) +∂yf(t,y(t)) ·f(t,y(t))

so that

T (2) = f + h

2∂tf + h

2∂yf ·f

Then we Taylor expand

f(t+α1,y+β1) = f(t,y) +α1∂tf(t,y) +β1∂yf(t,y) +R1(t+α1,y+β1)

R1(t+α1,y+β1) = α2
1

2 ∂ttf(ξ,µ) +α1β1∂tyf(ξ,µ) + β2
1

2 ∂yyf(ξ,µ)

Thus, we can solve for our parameters

f + h

2∂tf + h

2∂yf ·f = a1f +a1α1∂tf +a1β1∂yf +a1R1

a1 = 1

α1 = h

2

β1 = h

2 ·f(t,y)

With these choice of parameters, we can see that R1 is O(h2) (as long as f and its derivatives are
bounded). This means that

T (2)(t,y) = f
(
t+ h

2 ,y+ h

2 f(t,y)
)

+O(h2)

48

Note that we have to evaluate f twice, and we need not evaluate f ′. This resulting method is known as
the midpoint method, which is of the form

w0 = α

wi+1 = wi+hf
(
ti+

h

2 ,wi+
h

2 f(ti,wi)
)

it has truncation error τ =O(h2).

Similar ideas can be extended to higher-order Runge-Kutta methods, but the ansatzes are more compli-
cated. For instance,

T (3)(t,y) = f

(
t+α1,y+ δ1f

(
t+α2,y+ δ2f(t,y)

))
+O(h3)

Note the nesting of the evaluations. In practice, Butler tableaus are often computed to figure out coeffi-
cients.

Now, we show an ansatz for fourth order Runge-Kutta, which is one of the most important and most
used methods of this family.

1
6
(
a1f(ti,wi)︸ ︷︷ ︸

k1

+2a2f(ti+α2,wi+ δ2k1)︸ ︷︷ ︸
k2

)
+ 2a3f(ti+α3,wi+ δ3k2)︸ ︷︷ ︸

k3

+a4f(ti+α4,wi+ δ4k3)︸ ︷︷ ︸
k4

Make the following choice of parameters:

a1 = a2 = a3 = a4 = h

α2 = α3 = h

2
α4 = h

δ2 = δ3 = 1
2

δ4 = 1

Therefore, we have the fourth order Runge-Kutta method

w0 = α

k1 = hf(ti,wi)

k2 = hf
(
ti+

h

2 ,wi+
1
2k1

)
k3 = hf

(
ti+

h

2 ,wi+
1
2k2

)
k4 = hf

(
ti+h,wi+k3

)
wi+1 = wi+

1
6
(
k1 + 2k2 + 2k3 +k4)

The truncation error is O(h4) for f ∈ C5. This method is often abbreviated as RK4.

Now, we go back to the question of choosing the step length. It is relatively simple to implement adaptive
time stepping in Runge-Kutta methods. Time stepping methods might be used with time steps that are
too large (under resolving) or too small (over resolving).

49

We consider RK5, then compare with RK4 to get an estimate of the error.

τi+1(h) = τ̃i+1(h) + 1
h

(
w̃i+1−wi

)
where quantities with a tilde are from RK5, and those without are from RK4

τi+1(h) =O(h4)≈Kh4

Let α > 0. Then
τi+1(αh) =K(αh)4 = τi+1(h)

For h small, τ̃i+1 is small, so
τi+1(h)≈ 1

h

(
w̃i+1−wi+1

)
τi+1(h)≈ α4 1

h

(
w̃i+1−wi+1

)
Say we want to bound the truncation error in magnitude by ε. Then we get∣∣∣∣α4 1

h
(w̃i+1−wi+1)

∣∣∣∣= ∣∣τi+1(αh)
∣∣

≤ ε

α≤
(

εh

|w̃i+1−wi+1|

)1/4

More precisely, the procedure is:

1. Solve for wi+1, w̃i+1, compute γ =
(

εh

|w̃i+1−wi+1|

)1/4

2. If 1
h |w̃i+1−wi+1|> ε, repeat computation of wi+1 with γh the step (γh < 1)

(
too big of a step

)
3. If 1

h |w̃i+1−wi+1| ≤ ε, accept wi, but change next time step to γh (γ ≥ 1)
(
too small of a step

)
Note that the naive computation of wi+1 and w̃i+1 would take over 8 function evaluations. However,
some of the function evaluations can be recycled between the two. There are methods like Runge-Kutta-
Fehlberg that reuse the function evaluations, allowing as few as 6 function evaluations total per step.
MATLAB’s solver is ode45.

All of these ideas are applicable to systems of differential equations. A first order system IVP is
d

dt
~y = ~f(t,~y), t ∈ [a,b] ~y(a) = ~α

Meaning that
d

dt
y1 = f1(t,~y) = f1(t,y1, . . . ,ym)

...
...

d

dt
ym = fm(t,~y) = f1(t,y1, . . . ,ym)

y1(a) = α1
...

...
ym(a) = αm

50

Note that the methods we have learned so far generalize directly to systems of equations. We simply
replace iterates with vectors.

For higher order differential equations, we can simply reformulate them as a first order system and solve
with the same methods.

y(m)(t) = f(t,y,y′, . . . ,y(m)), t ∈ [a,b]
y(a) = α1, . . . , y

(m−1)(a) = αm

The equivalent first order system is, letting uj = y(j−1),

d

dt
u1 = y′(t) = u2(t)
...

...
d

dt
um = y(m)(t) = f(t,u1, . . . ,um)

Lecture 20: Implicit and Multistep Methods (11/12)

Recall that if h is too large, then explicit/forward Euler diverges as t→∞. Implicit methods enhance
stability. Recall the forward Euler is of the form

w0 = α

wi+1 = wi+hf(ti,wi)

Here, wi+1 depends explicitly on known quantities (wi, ti,h,f(ti,wi)). In contrast, implicit Euler is of the
form

w0 = α

wi+1 = wi+hf(ti+1,wi+1)

we have to solve for wi+1, which depends on f .

Example 0.9. Consider the simple linear IVP

y′(t) =−βy(t)

which has soltuion y(t) = y(0)e−βt. Then implicit Euler is of the form

w0 = α

wi+1 = wi+h(−βwi+1)

solving for wi+1, we have

wi+1 = 1
1 +hβ

wi

That was simple enough since f is linear, but what if y′(t) = ey(t). Then implicit Euler is

w0 = α

wi+1 = wi+hewi+1

51

this means we have to solve a nonlinear equation at each step. Newton iterations are one method to solve
for these. In general implicit methods are stable but expensive.

Implicit methods are also used for systems of ODEs/ higher order ODEs. Linear equations are common,
and analogously to our above example, each step would require a linear system solve, which is expensive.

For now, we have only seen one step methods, which are those of the form

w0 = α

wi+1 = wi+hφ(ti,wi,h)

Forward Euler and RK4 are both of this form. Backward Euler is of this form with ti+1,wi+1,h as the
parameters to φ. RK4 is high-order, but involves function evaluations at times between ti and ti+1. As
always, these function evaluations can be very expensive.

Multi-step methods

Multi-step methods provide high-order truncation errors with function evaluations only at the wi, i =
0, . . . ,n, meaning with no intermediate evaluations. They can be explicit or implicit. The general form
for an m step method is

w0 = α, w1 = α1, . . . , wm−1 = αm−1

wi+1 = am−1wi+am−2wi−1 + . . .+a0wi−m+1 +hF (ti,h,wi+1, . . . ,wi−m+1)

The method is implicit if wi+1 is a parameter to F , and explicit if not. The local truncation error (LTE)
is

τi+1(h) = y(ti+1)−am−1y(ti)− . . .−a0y(ti+1−m)
h

−F
(
ti,y(ti+1), . . . ,y(ti+1−m)

)
Here we are taking i=m−1, . . . , N −1, h= b−a

N , and ti = a+ ih.

One-step methods have m = 1 and a0 = 1. For m ≥ 2, the idea is that coefficients ai and F come from
integration. We want to solve y′(t) = f(t,y). Note that

y(ti+1)−y(ti) =
∫ ti+1

ti

y′(t) dt

=
∫ ti+1

ti

f(t,y(t)) dt

To integrate this, we use Pm(t), the polynomial interpolant of f(ti,y(ti)), . . . ,f(ti+1−m,y(ti+1−m)). How-
ever, we now integrate only over a subinterval of the interval that the nodes reside in, usually of the form
[ti, ti+1]. In implicit methods we also include f(ti+1,y(ti+1)).

Here we consider Simpson’s implicit method. This is of the form

y(ti+1)−y(ti−1)≈
∫ ti+1

ti−1
Pn(t) dt

y(ti+1)≈ y(ti−1)
∫ ti+1

ti−1
Pn(t) dt

≈ y(ti−1) + h

3
(
f(ti+1,y(ti+1)) + 4f(ti,y(ti)) +f(ti+1,y(ti+1))

)

52

Thus, our method is

w0 = α,w1 = α1

wi+1 = wi−1 + h

3
(
f(ti+1,y(ti+1)) + 4f(ti,y(ti)) +f(ti+1,y(ti+1))

)
This is an implicit method with a0 = 1,a0 = 0, and m= 2.

There are also a large class of methods known as Adams-Bashforth (explicit) and Adams-Moulton (im-
plicit) methods. For there, we only integrate in [ti, ti+1], with am−1 = 1, aj = 0, j 6=m−1. At m= 4, we
have four-step (explicit) fourth-order Adams-Bashforth

w0 = α, w1 = α1, w2 = α2, w3 = α3

wi+1 = wi+
h

24
(
55f(ti,wi)−59f(ti−1,wi−1) + 37f(ti−2,wi−2)−9f(ti−3,wi−3)

)
The truncation error can be computed using the errors from interpolation, and takes the form

τi+1(h) = 251
720y

(5)(µi)h4 µi ∈ (ti−3, ti+1)

At m= 3, we have the three-step (implicit) fourth-order Adams-Moulton

w0 = α, w1 = α1, w2 = α2

wi+1 = wi+
h

24
(
9f(ti+1,wi+1)) + 19f(ti,wi)−5f(ti−1,wi−1) +f(ti−2,wi−2)

)
The truncation error is of the form

τi+1(h) =− 19
720y

(5)(µi)h4

Note that we have a fourth-order method with three-steps.

Predictor-corrector methods

Implicit methods are difficult to use directly with nonlinear f . In practice, they are used, but with
wi+1 on the right hand side replaced by a predictor of wi+1 called wpi+1. The predictor comes from an
explicit method, and the ”implicit” method used after (which is no longer implicit by definition) is called
a corrector. For instance, a fourth-order predictor-corrector method is given by

1. w0 = α

2. Compute w1,w2,w3 using RK4

3. Compute predictor using (explicit) fourth-order Adam-Bashforth

wpi+1 = wi+
h

24(. . .)

4. Use predictor in implicit fourth-order Adams-Moulton

wi+1 = wi+
h

24
(
9f(ti+1,w

p
i+1) + . . .

)
This is generally more stable than an explicit method, while less stable than an implicit method. It
does not require intermediate evaluations like Runge-Kutta on all steps would. Note that the predictor
method can be iterated (a fixed point iteration) to gain some accuracy, but in practice this often does
not add much accuracy.

53

Lecture 21: Stability of IVP Solvers (11/14)

A multi-step method for an IVP is consistent if

lim
h→0

∣∣τi+1(h)
∣∣= 0 i=m−1, . . . ,N

lim
h→0

∣∣αi−y(ti)
∣∣= 0 i= 0, . . . ,m−1

the method is convergent if
lim
h→0

max
0≤i≤N

∣∣wi−y(ti)
∣∣= 0

Stability of the method roughly means that there is some C > 0 such that

[measurement of output]≤ C · [measurement of input]

A more rigorous definition — a method is zero-stable or Dahlquist-stable if the response of a numerical
method to f(ti,y) = 0 with initial value y(a) = α=w0 remains bounded, meaning that there exists some
C > 0 such that

|wi| ≤ C
∣∣y(a)

∣∣ ∀i
intuitively, this measures stability to round-off error.

We will assume that F is continuous on (t,h,w) ∈ [a,b]× [0,h0]×Rn+1 =DF for some h0 > 0. Also, F is
Lipschitz in w with F = 0 if f = 0, and f continuous in (t,y) ∈ [a,b]×R =Df .

Theorem 23. All explicit one-step methods are

• Zero-stable

• Convergent if and only if they are consistent

• There exists some τ(h) such that∣∣τi+1(h)
∣∣≤ τ(h) ∀i= 0, . . . ,N1, h ∈ [0,h0]

then ∣∣y(ti)−wi
∣∣≤ τ(h)

L
eL(ti−a)

The zero-response characteristic polynomial is p(z) = zm−am−1z
m−1− . . .−a1z−a0, where the ak are

the coefficients of the multi-step method. β1 = 1 is always a root of this polynomial, meaning 1−am−1−
. . .−a0 = 0. When all roots are simple, it can be shown that

wn =
m∑
j=1

cjβ
n
j

is the general solution to
wi+1 = am−1wi+am−2wi−1 + . . .+a0wi+1−m

for stability, we do not want wn to grow without bound, so we want the
∣∣βj∣∣≤ 1.

54

Theorem 24. The multi-step method is zero-stable if and only if p(z) satisfies Dahlquist’s root condition∣∣βj∣∣≤ 1 j = 1, . . . ,m

and if
∣∣βj∣∣= 1, then βj is a simple root.

The method is said to be:

• strongly stable if the only root with magnitude 1 is β = 1

• weakly stable if there is a β 6= 1 with magnitude 1

• unstable if Dahlquist’s root condition is not met

Moreover, if the method is consistent, then it is convergent if and only if it is zero-stable.

Example 0.10. All one-step methods have a characteristic polynomial with p(λ) = λ−1, so are strongly
stable.

Adams-Bashforth has p(λ) = λm−1(λ−1) and hence is strongly stable as well.

Example 0.11. Now, we reconsider our computational example, given by

y′ = λy λ ∈ C, t ∈ [a,b], y(a) = α

For some values of h, the method is unstable, even though it is stable to round-off error due to being
zero-stable. This stability is due to the equation f . Such equations are called stiff.

We substitute f = λy into F .

wi+1 = am−1wi+ . . .+a0wi+1−m+hλ(bmwi+1 + . . .+ b0wi+1−m)
0 = (1−hλbm)wi+1− (am−1 +hλbm−1)wi− . . .− (a0 +hλb0)wi+1−m

Recall that bm = 0 if the method is explicit. The general solution is wn =
∑m
j=1 cjβj , where the βj are

roots of
Q(z) = (1−hλbm)zm− (am−1 +hλbm−1)zm−1− . . .− (a0 +hλb0)

The method is absolutely stable if the response to f = λy for some λ ∈C and y(a) = α is stable, meaning
that there is some C > 0 such that

|wn| ≤ C
∣∣∣eλhn∣∣∣

The region of absolute stability is defined as

R= {hλ ∈ C |
∣∣βj∣∣< 1, ∀βj ∈ C s.t. Q(βj) = 0}

as expected, whenever hλ ∈R, the method is absolutely stable.

A method is called A-stable if C− ⊆R, where C− is the left half plane.

Example 0.12. We take f(t,y) = λy and run explicit Euler on it. Then we have

wi+1 = wi+hλwi

= (1 +hλ)wi
Q(z) = z− (1 +hλ)

55

Thus, Q has one root, 1+hλ. Thus, R consists of hλ such that |1 +hλ|< 1. This is a circle in the plane
of radius 1 centered at −1. Of course, the method is not A-stable.

For λ ∈ R, we must have

|1 +hλ|< 1
−1< 1 +hλ < 1
−2< hλ < 0

h <
2
|λ|

for the method to be stable.

Example 0.13. Implicit Euler with this f(t,y) = λy gives

(1−hλ)wi+1 = wi

Q(z) = (1−hλz)−1

so the only root is 1
1−hλ , meaning that |β < 1| if and only if 1 < |1−hλ|. This means that R is the

complement of the disc of radius 1 centered at 1 ∈ C. Thus, the method is A-stable. If λ is negative,
there is no restriction on h.

Lecture 22: Boundary Value Problems (11/19)

In initial value problems, we often consider the parameter t to represent time, so we have a system
with an initial state that we let evolve. In boundary value problems, we consider the parameter to be a
spatial variable x, which may be higher dimensional. Here, we have boundary conditions, that specify
information at the boundary of some domain. There are multiple types of boundary conditions (BCs),
including:

• Dirichlet BCs, of the form y(a) = α

• Neumann BCs, of the form y′(a) = α

• Robin BCs , which are linear combinations of solution and derivative Ay(a) +By′(a) = α

Other types of BCs exist, especially in higher dimensions. Physicists/ engineers sometimes have specific
names for these BCs depending on the equation.

A general second order BVP with Dirichlet boundary conditions is of the form

y′′(x) = f(x,y(x),y′(x)) x ∈ [a,b]
y(a) = α

y(b) = β

The problem is linear if there exist p(x), q(x), r(x) if f can be written

f(x,y,y′) = p(x)y′+ q(x)y+ r(x)

meaning that f is linear in y and y′.

56

In 1D, we can use shooting methods to solve these BVPs. The basic idea is to reformulate the problem
as an IVP with some manipulations, and then use numerical methods for IVPs to compute a solution.
These methods may have instabilities and other limitations. Instead, we will consider finite difference
methods.

Finite difference methods

These methods are simple, but limited to ”easy” domains. The idea of finite difference methods is to
replace derivatives with discrete finite difference approximations and solve the resulting linear system of
equations.

We discretize our domain with equally spaced nodes a = x0 < .. . < xn = b, where xi = a+ ih, h = b−a
n .

We assume a general linear BVP

y′′ = p(x)y′+ q(x)y+ r(x) x ∈ [a,b]
y(a) = α

y(b) = β

We use centered difference equations for y′ and y′′, which are O(h2)

y′′(xi) = y(xi−1)−2y(xi) +y(xi+1)
h2 − h

2

12y
(4)(ξi)

y′(xi) = y(xi+1)−y(xi−1)
2h − h

2

6 y
(3)(ηi)

This means that at each interior xi, i= 1, . . . ,n−1, the equation is approximately (to within O(h2) error),

wi−1−2wi+wi+1
h2 = p(xi)

wi+1−wi−1
2h + q(xi)wi+ r(xi) i= 1, . . . ,n−1

w0 = α, wn = β

Thus, we have n−1 equations in the n−1 unknowns wi. Note that

wi−1−wi+wi+1
h2 =− 1

h2

[
−1 2 −1

]wi−1
wi
wi+1

 1< i < n−1

and the equation is truncated at i= 1,n−1, so we have that this is equal to

− 1
h2

2 −1
−1 2 −1

.
−1 2 −1

−1 2

︸ ︷︷ ︸

A

w1
w2
...

wn−2
wn−1

+

1
h2w0

0
...
0

1
h2wn

57

We can view the matrix A as applying the second derivative to the vector w. The next term is

p(xi)
wi+1−wi−1

2h = 1
2h

0 p(x1)
−p(x2) 0 p(x2)

.
0 p(xn−2)

−p(xn−1) 0

︸ ︷︷ ︸

D

w1
...

wn−1

+

−p(x1) 1
2hw0

0
...
0

p(xn−1) 1
2hwn

We can view D as applying a derivative to the vector w. The last terms give

q(xi)wi =⇒

q(x1)

. . .
q(xn−1)

︸ ︷︷ ︸

M

w1
...

wn−1

r(xi) =⇒

r(x1)

...
r(xn−1)

so our system is

(A−D−M)w =

r(x1)− 1
h2w0− p(x1)

2h w0
r(x2)

...
r(xn−2)

r(xn−1)− 1
h2wn+ 1

2hp(xn−1)wn

A nonlinear BVP will require Newton’s method, which require matrix Jacobians. Each step requires a
matrix inversion. Also, different BCs require modifications to this method. For instance, a Neumann
boundary condition requires

y′(a) = α =⇒ w1−w0
h

= α

We will also consider how this process can be generalized to PDEs. Here, we will focus on 2D spatial
problems (no time parameter). Often, these are elliptic equations. The canonical equation of this form
is Poisson’s equation:

∇2u=−f

For simplicity, we will take a square domain (0,1)2, with an evenly spaced square grid stencil. It does not
complicate matter much to choose different spacing amounts in x and y, but we keep them the same here.
BCs can be full Dirichlet, part Dirichlet part Neumann, or plenty of other choices. The well-posedness
of the PDE depends on the choice of BCs.

We use finite difference approximations for the partial derivatives

∂xxu(xi,yj) = u(xi+1,yj)−2u(xi,yj) +u(xi−1,yj)
h2 − h

2

12∂x4u(ξi,yj)

58

with the analogous equations for differentiating in y. The Poisson equation then becomes

∇2u=−f

=⇒
(u(xi+1,yj)−2u(xi,yj) +u(xi−1,yj)

h2 + u(xi,yj+1)−2u(xi,yj) +u(xi,yj−1)
h2

)
=−f(xi,yj) +O(h2)

Lecture 23: (11/21)

We continue with the 2D Poisson equation ∇2u=−f . Based on the above, our numerical scheme is

wi+1,j−2wi,j +wi−1,j
h2 + wi,j+1−2wi,j +wi,j−1

h2 =−fi,j

for simplicity of the resulting formulas, we assume that our Dirichlet boundary conditions specify tht the
solution is zero along the boundary. There are two ways of writing this equation as a matrix equation.
One is as a Sylvester equation

AU +UA=−F

A= −1
h2

2 −1
−1 2 −1

.

U =

w1,1 . . . wn−1,1

...
...

w1,n−1 . . . wn−1,n−1

F =

f1,1 . . . fn−1,1

...
...

f1,n−1 . . . fn−1,n−1

Note that the indexing of U and F are transposed from what we expect. This is due to the ordinary
indexing on the plane. We multiply

AU = −1
h2

2w1,1−w1,2 . . .

−w1,1 + 2w1,2−w1,3 . . .
−w1,2 + 2w1,3−w1,4 . . .

... . . .

The elements of AU are the finite difference approximations to ∂yyu(xi,yj). Analogously, UA are the
finite difference approximations to ∂xxu(xi,yj). There are methods to solve Sylvester equations directly.

An alternative way to write the scheme is to write it as a large linear system. This is done by concatenating
all columns of U in a single vector to get a system of the form

K~u=−~f

the K is a very sparse block matrix.

Thus, we have two different ways to solve this Poisson equation. Other approaches to solve the Poisson
equation include using different meshes and using other finite difference approximations.

59

Recall that Poisson equation models heat conduction at a stable state. If we want to model evolution
over time of some process, we can consider the time-dependent version of the heat equation

ρcp∂tu−k∇2u= f̃

ρ is density, cp is specific heat, k is thermal conductivity, u is temperature, and f̃ is heat generation. We
manipulate this to

∂tu−α∇2u= 1
ρcp

f̃

where α= k
ρcp

> 0 is thermal diffusivity. We write the right side as f , so our equation is

∂tu−α∇2u= f

This can be solved in multiple spatial dimensions plus the time dimension. We will focus on the 1D
version. Let Ω = (0,L) the spatial domain, and [0,T] the time domain. Our equation is

∂tu−α∂xxu= f

Now, we need both initial conditions and boundary conditions:

u(x,0) = u0(x)
u(0, t) = g0(t)
u(L,t) = gL(t)

The BCs are Dirichlet boundary conditions (aka temperature boundary conditions). Often the g0(t) and
gL(t) are constant over time. Also, Neumann boundary conditions can be used to for instance model
convection.

The idea to solve this problem is to discretize in time and space using finite differences. Assume for
simplicity that f = 0, g0 = 0, gL = 0. We first discretize in space

∂tu= α∂xxu

=⇒ ∂twi = α
wi+1−2wi+wi−1

∆x2

=⇒ ∂t ~w(t) = αA~w(t)

Note that in time, wki ≈ u(xi, tk) (superscripts are time indices), where xi = i∆x, tk = k∆t. We have
different options to solve this by IVP solvers:

Explicit Euler: ∂tw = wk+1−wk

∆t
=⇒ wk+1 = wk + ∆tαAwk

Implicit Euler: wk+1 = wk + ∆tαAwk+1

wk+1 = (I−∆tαA)−1wk

Also, the Trapezoidal method (called Crank-Nicolson here) works well in these methods

wk+1 = wk + ∆t12(αAwk+1 +αAwk)

wk+1 =
(
I−∆t12αA

)−1(
I+ ∆t12αA

)
wk

60

Denote Ã= ∆x2A. Then we can write

wk+1 =
(
I− ∆t

2∆x2αÃ
)−1(

I+ ∆t
2∆x2αA

)
wk

This method is stable if all eigenvalues of
(
I− ∆t

2∆x2αÃ
)−1(

I+ ∆t
2∆x2αA

)
are < 1. The starting vector is

known:

w0 =

u0(x1)

...
u0(xn−1)

Expanding this out, we get that

wk+1
i = wki + ∆t

2
(
α
wk+1
i+1 −2wk+1

i +wk+1
i−1

∆x2 +α
wki+1−2wki +wki−1

∆x2

)
Then our truncation error is

τk+1
i+1 (∆x,∆t) = u(xi, tk+1)−u(xi, tk)

∆t − 1
2
(
α
u(xi+1, t

k+1)−2u(xi, tk+1) +u(xi−1, t
k+1)

∆x2 + . . .
)

=O(∆t2, ∆x2)

as can be shown by Taylor expansion. For explicit Euler, τk+1
i+1 =O(∆t, ∆x2).

Also, we can perform Von Neumann stability analysis. For this, we assume the solution is in the form of
a Fourier series:

u(x,t) =
∑
s∈Z

û(s, t)ei
2π
L
sx

where L is the length of the spatial domain. It suffices to consider each Fourier mode independently:

wkj ≈ û(s, tk)︸ ︷︷ ︸
Bk

ei
2π
L
sxj

=⇒ wk+1
j ≈ û(s, tk + ∆t)ei

2π
L
sxj

For stability, we want ∣∣∣Bk+1
∣∣∣∣∣Bk
∣∣ =Gk ≤ 1 ∀k

where Gk is called the growth factor or amplification factor.

Lecture 24: Properties of Finite Difference Methods (11/26)

For solving wave equations, higher frequencies require higher mesh sizes for the numerical scheme, since
peaks and valleys in the solution may not be adequately captured by lower resolution mesh sizes.

We recall Von Neumann stability analysis. Replace

wkj ≈ û(s, tk)ei
2π
L
sxj = ĝk(ξ)eiξxj

wk+1
j ≈ û(s, tk+1)ei

2π
L
sxj = ĝk+1(ξ)eiξxj

61

where ξ = 2πs
L . For stability (in time), we want amplitudes under control

G(k)(ξ) = ĝk+1(ξ)
ĝk(ξ)

∥∥∥G(k)
∥∥∥
∞
≤ 1

A translation operator gives a shift in space

wkj+1 = ĝk(ξ)eiξ(xj+∆x)

= ĝk(ξ)eiξxjeiξ∆x

≈ wkj eiξ∆x

Example 0.14 (Explicit Euler on time-dependent heat equation).

Consider the heat equation ∂tu= α∂xxu. The iterates for explicit Euler are of the form

wk+1
j = wkj +α

∆t
∆x2 (wkj+1−2wkj +wkj−1)

We perform the Von Neumann stability analysis by replacing wkj = ĝk(ξ)eiξxj

ĝk+1(ξ)eiξxj = ĝk(ξ)eiξxj +α
∆t

∆x2

(
eiξ∆x−2 +e−iξ∆x

)
ĝ(ξ)eiξxj

= ĝk(ξ)eiξxj +α
∆t

∆x2

(
cos(ξ∆x)−1

)
2ĝ(ξ)eiξxj

G(ξ) = ĝk+1(ξ)
ĝk(ξ) = 1 +α

∆t
∆x2︸ ︷︷ ︸
σ

2(cos(ξ∆x)−1)

Recall that sin2(ξ∆x2) = 1
2(1− cos(ξ∆x). Thus, we have

G(ξ) = 1−4σ sin2
(ξ∆x

2
)

So that our stability condition is

∣∣G(ξ)
∣∣≤ 1 ⇐⇒ 0≤ 4σ sin2

(ξ∆x
2
)
≤ 2

Note that σ and sin2 are always positive, so the left inequality holds automatically. Thus, our condition
is

σ sin2
(ξ∆x

2
)
≤ 1

2

Since sin2 is bounded by 1, a sufficient condition is σ ≤ 1/2. This means that we should choose our
discretization parameters to be related by

∆t
∆x2 ≤

1
2α

Von Neumann stability analysis can be extended to multi-step methods and more complicated systems.

Finally, we relate consistency, stability, and convergence of finite difference methods for PDEs.

62

Recall that for the heat equation, we considered different numerical methods. Crank-Nicolson takes the
form

wk+1 =
(
I− 1

2σÃ
)−1(

I+ 1
2σÃ

)
︸ ︷︷ ︸

S∆t,∆x

wk

This matrix S, the stepping matrix, characterizes the method.

A method is consistent if lim∆t→0
∥∥∥~u(t+ ∆t)−S∆t,∆x~u(t)

∥∥∥= 0. Where ~u(t) =
[
u(x1, t), . . . ,u(xn−1, t)

]
is

the exact solution at time t and points in the spacial mesh a = x0 < .. . < xn = b. This norm is roughly
proportional to local truncation error.

A method is convergent if lim∆t→0
∥∥∥wt/∆t−u(t)

∥∥∥= 0 for every t multiple of ∆t. Intuitively, consistency
means the equation is well-approximated while convergence means the solution is well-approximated.

The method is stable if ‖~w
k+1‖
‖~wk‖

∥∥∥S∆t,∆x
∥∥∥≤ 1 +C∆t for some C > 0 and some norms.

Theorem 25 (Lax equivalence theorem). Let a finite difference scheme be a consistent approximation to
a well-posed linear PDE in the form of an initial value problem (∂tu= Lu) where L is a linear operator.

Then the scheme is convergent if and only if it is stable.

Thus, for a linear PDE, it is sufficient to show that the truncation error goes to 0 and show stability in
order to conclude convergence of a method.

Energy and finite element methods

These are also called Ritz methods or Rayleigh-Ritz methods. For now, we focus on the Poisson equation
−∆u = f or, in 1D, −u′′(x) = f(x), x ∈ [0,1]. Also, we assume zero Dirichlet boundary conditions
u(0) = u(1) = 0. The form of this equation as written is called the strong form (S).

The idea of these methods is to not solve the equation directly, but instead convert it into a weak form
by multiplying by arbitrary test functions and integrating. For example,

−u′′ = f

−u′′v = fv

−
∫ 1

0
u′′v dx=

∫ 1

0
fv dx

〈−u′′,v〉L2 = 〈f,v〉L2

where v ∈ C1
0 [0,1], meaning it is continuously differentiable and satisfies the boundary conditions v(0) =

v(1) = 0. Integrating by parts gives

−
∫ 1

0
u′′v dx=−u′(x)v(x)

]1
0

+
∫ 1

0
u′(x)v′(x) dx

=
∫ 1

0
u′(x)v′(x) dx

so our equation is ∫ 1

0
u′(x)v′(x) dx=

∫ 1

0
f(x)v(x) dx ∀v ∈ C1

0 [0,1]

63

This is the weak form (W). It turns out to be equivalent to the strong form (S). We end by stating a
lemma that we will use later:

Lemma 6. Let g ∈ C[a,b] with
∫ b
a g(x)v(x) dx= 0 for all v ∈ C∞0 [a,b]. Then g = 0.

Lecture 25: Energy and Finite Element Methods (12/3)

Theorem 26. (S) ⇐⇒ (W)

Proof. We will only show this for the special case of solutions that are sufficiently smooth, meaning for
u ∈ C2

0 [0,1].

(S) =⇒ (W) is given by the above derivation.

For (S) ⇐= (W), suppose ∫ 1

0
u′v′ dx=

∫ 1

0
fv dx

for all v ∈ C1
0 [0,1]. Then we integrate by parts so

u′v |10 −
∫ 1

0
u′′v dx=

∫ 1

0
fv dx ∀v ∈ C1

0 [0,1]

−
∫ 1

0
u′′v dx=

∫ 1

0
fv dx ∀v ∈ C1

0 [0,1]∫ 1

0
(−u′′−f)v dx= 0 ∀v ∈ C1

0 [0,1]

Thus, applying the lemma gives −u′′−f = 0 so −u′′ = f .

Note that this proof can be done using just properties of the L2 inner product. For solutions that are
not sufficiently smooth, we must use more general spaces: Sobolev spaces. Recall we assume here that
Ω = [0,1].

L2(Ω) =
{
u : Ω→ R |

∫ 1

0
|u|2 dx <∞

}
H1(Ω) =

{
u ∈ L2(Ω) | u′ ∈ L2

}
H1

0 (Ω) =
{
u ∈H1(Ω) | u(0) = u(1) = 0

}
A more general discussion of the above strong and weak formulations switches out H1

0 [0,1] for each
instance of C1

0 [0,1].

We now consider the more general weak form equation: find u ∈H1
0 (Ω) such that∫ 1

0
u′v′ dx=

∫ 1

0
fv dx ∀v ∈H1

0 (Ω)

Define the bilinear form b(u,v) =
∫ 1
0 u
′v′ dx and the linear form l(v) =

∫ 1
0 fv dx. Then we can rewrite the

weak formulation as: find u ∈H1
0 (Ω) = U such that

b(u,v) = l(v) ∀v ∈H1
0 (Ω) = V

64

U is called the trial space, and V is the test space. This is called a (linear) variational formulation. It
is used to prove well-posedness of PDEs. Notice that the trial and test spaces are infinite-dimensional.
In this case, formulations are called continuous variational formulations.

We consider properties of b for this equation:

• b(u,v) = b(v,u), so b is symmetric.

• b(u,u)> 0 for all u 6= 0, so b is positive definite.

When b is spd, the methods used to solve the equations are sometimes called energy methods because
it can be shown that the weak formulation is equivalent to an energy equation (E)

min
u∈U

F (u) = 1
2b(u,u)− l(u)

Now, we want to use (W) to construct a numerical method to solve the equation. The idea is to discretize
U and V by finding finite-dimensional subspaces called discrete trial and test spaces, given by Uh ⊆ U
and Vh ⊆ V .

Since U = V here, we can choose Uh = Vh = span(ϕj)nj=1, where the ϕj are linearly independent. Thus
we have

un(x) =
n∑
j=1

αjϕj(x) ~α ∈ Rn

The approximate problem becomes: find u ∈ Uh such that

(G) b(uh,vh) = l(vh) ∀vh ∈ Vh

This is a discrete variational formulation, called the Galerkin formulation. To solve it, find uh =∑n
j=1αjϕj(x) ∈ Un such that

b(uh,ϕi) = b(
∑
j

αjϕj ,ϕi)

=
∑
j

αjb(ϕj ,ϕi)

= l(ϕi)

for all i= 1, . . . ,n. Thus, we have n equations in n unknowns∑
j

αj b(ϕj ,ϕi)︸ ︷︷ ︸
Kij

= l(ϕi) i= 1, . . . ,n

Let F = (l(ϕ1), . . . , l(ϕn)), called the force vector. α = (α1, . . . ,αn) is the solution vector, and K =
{Kij}ni,j=1, so the equation is Kα = F . This is the matrix form (M), which is clearly equivalent to the
Galerkin formulation (G).

To utilize this formulation, we must choose basis functions. We would like to choose ϕj so that K is
easy to invert. For instance, we could choose K to have special structure so that we can use FFT-like
algorithms to solve the system. Or, we could choose K to be sparse. For sparsity, we want that

Kij = b(ϕj ,ϕi) =
∫ 1

0
ϕ′jϕ

′
i dx= 0 in most cases

65

This is easy to do by choosing ϕj with local support. Then if ϕi and ϕj have disjoint support, so do
their derivatives, so b(ϕi,ϕj) = 0. A typical choice for ϕj are hat functions, which are piecewise linear
polynomials.

First, we discretize Ω = [0,1] into elements

e1 = (x0,x1), e2 = (x1,x2), . . . , en = (xn−1,xn)

where 0 = x0 < x1 < .. . ,< xn = 1. These are not necessarily taken to be uniformly distributed. Then we
take ϕj as ϕj(xj) = 1 and linear down to 0 as xj−1, xj+1, for j = 1, . . . ,n−1. Here, the supports satsify
supp(ϕj) = ej ∪ej+1. In total, we have n−1 basis hat functions, with n elements. They satisfy

ϕj(xi) = δij

Lecture 26: Finite Element Methods (12/5)

Since the hat functions satisfy ϕj(xi) = δij , they have a special property:

uh(xk) =
n∑
j=1

αjϕj(xk)

=
∑
j

αjδjk

= αk

for any k = 1, . . . ,n. Thus, α = (uh(x1), . . . ,uh(xn)), so the αj actually correspond to the nodal values.
This is a very nice property for the basis of hat functions.

The methods for solving PDEs are described last lecture, in the case where the basis of ϕj consists of
piecewise polynomials with local support, are called finite element methods. When Uh = Vh, they are
called Bubnov-Galerkin methods. When Uh 6= Vh, they are called Petrov-Galerkin methods.

Piecewise linear hat functions results in convergence of order O(h2), where h is the maximum element
size. Here, we measure convergence in the L2 norm, so ‖uh−u‖L2 =O(h2). Better convergence is possible
by enriching the basis with quadratic or other higher-order polynomial functions.

Example 0.15. Say we want to solve the equation

−u′′(x) = f(x) x ∈ Ω = (0,1)
u(0) = g

u′(1) = q

So now we have one Dirichlet boundary condition at x = 0 and one Neumann boundary condition at
x= 1. To get this in variational form, we test with

v ∈H1
D(Ω) = {w ∈H1(Ω) | w(0) = 0}

66

so we enforce that the test functions are zero only at the Dirichlet boundary condition. Then we have∫ 1

0
−u′′v dx=

∫ 1

0
fv dx ∀v ∈H1

D(Ω)

=−u′(x)v(x)
]1

0
+
∫ 1

0
u′v′ dx integrate by parts

=−u′(1)v(1) +u′(0)v(0) +
∫ 1

0
u′v′ dx

=−q(1)v(1) +
∫ 1

0
u′v′ dx

So we have an equation ∫ 1

0
u′v′ dx=

∫ 1

0
fv dx+ qv(1)

Thus, we have the same bilinear form b(u,v) =
∫ 1

0 u
′v′ dx, but now we have a linear form

l1(v) =
∫ 1

0
fv dx+ qv(1)

Additionally, u must satisfy u(0) = g, so we write u= u0 +w with u0(0) = g and w ∈H1
D(Ω). Note that

H1
D(Ω) is a vector space, but the analogous space with enforcing the Dirichlet boundary condition at g

is not. Therefore, the variation formulation becomesFind u= u0 +w ∈ u0 +U such that
b(u,v) = l1(v) ∀v ∈ V

Which is equivalent to the weak formulation

(W)

Find w ∈ U
b(w,v) = l1(v)− b(u0,v) =: l(v) ∀v ∈ V

We now discretize with hat functions. Our elements are Ω1, . . . ,Ωn, where Ωj = (xj−1,xj). We look for
an approximation

uh = u0,h+wh = gϕ0 +
n∑
j=1

αjϕj

We choose hat functions ϕj as follows: ϕ0 on its support is linear from (x0,1) to (x1,0). ϕn on its support
is linear from (xn−1,0) to (xn,1). For j in between ϕj is linear from (xj−1,0) to (xj ,1) to (xj+1,0). Note
that now we have these boundary hat values, since we do not have just zero boundary conditions. The
derivatives ϕ′j are step functions so they are easy to integrate against. Then our equations are

n∑
j=1

αj b(ϕj ,ϕi)︸ ︷︷ ︸
Kij

= b(wh,ϕi) = l(ϕi) = l1(ϕi)−gb(ϕ0,ϕi)︸ ︷︷ ︸
Fi

i= 1, . . . ,n

Note that Kij =
∫ 1

0 ϕ
′
jϕi; dx, and any adjacent basis functions have disjoint support, so K is in fact

symmetric tridiagonal. With a uniform grid, the diagonal of K is (since piecewise linearity gives slopes

67

of 1
h),

Kii =
∫ 1

0
ϕ′iϕ

′
i dx

=
∫

Ωi

1
h2 dx+

∫
Ωi+1

1
h2 dx

= 2h
h2

= 2
h

If i= 1, . . . ,n−1, and Knn = 1
h . Now, for the sub/superdiagonal elements, let j = i+ 1. Then

Kij =
∫ 1

0
ϕ′iϕ

′
j dx

=
∫

Ωj

−1
h2 dx

= −1
h

Then we compute Fi = l1(v)− gb(ϕ0,ϕi). We have b(ϕ0,ϕ1) = −1
h , and b(ϕ0,ϕi) = 0 for i > 1. For the

other summand,

l1(ϕi) =
∫ 1

0
fϕi dx+ qϕi(1)

=
∫ 1

0
fϕi dx︸ ︷︷ ︸
F̃i

+qδi,n

=
∫

Ωi∪Ωi+1
fϕi dx+ qδi,n

The integral of course depends on f . Thus, we have

F1 = F̃1−g
1
h

Fi = F̃i i= 2, . . . ,n−1
Fn = F̃n+ q

Thus, in total we have the equation Kα= F , where

K = 1
h

2 −1
−1 2 −1

.
−1 1

α=

uh(x1)

...
uh(xn)

F =

∫ 1

0 fϕ1 dx
...∫ 1

0 fϕn dx

+

0
...
q

+

g 1
h...

0

68

Our method is to solve Kα= F and recover the discrete solution

uh(x) = u0,h+wh(x) = gϕ0(x) +
n∑
j=1

αjϕj(x)

Computational implementation

If we do not have evenly spaced elements, then the bilinear form evaluations may not be evaluated
analytically as we have done. They have computed to be computed by numerical integration.

The naive way is to form K by:

for i = 1:n

for j =1:n
K(i, j) =

∫
Ωϕ
′
jϕ
′
i dx

end
F (i) =

∫
Ω f(x)ϕi(x) dx− qϕi(1)−gK(i,0)

end

To compute the integral requires iterating over the elements and computing each integral
∫

Ωe ϕ
′
jϕ
′
i dx on

the element one by one. This implementation is very inefficient, since most K(i, j) are zero. Note the
pattern, in which we have to compute these integrals over the elements multiple times. Instead, we want
the outer loop to be over the elements.

K =

∫

Ωϕ
′
1ϕ
′
1 . . .

∫
Ωϕ
′
nϕ
′
1

...
...∫

Ωϕ
′
1ϕ
′
n . . .

∫
Ωϕ
′
nϕ
′
n

=
ne∑
e=1

∫

Ωe ϕ
′
1ϕ
′
1 . . .

∫
Ωe ϕ

′
nϕ
′
1

...
...∫

Ωe ϕ
′
1ϕ
′
n . . .

∫
Ωe ϕ

′
nϕ
′
n

︸ ︷︷ ︸

Ke

Ke is called the element stiffness matrix. We know that Ke
ij = 0 if ϕi |Ωe= 0 or ϕj |Ωe= 0. Thus, these

matrices have nice nonzero structure.

K1 =

∗

K2 =

∗ ∗∗ ∗

K3 =

 ∗ ∗
∗ ∗

69

Only 4 nonzero elements are present in each element stiffness matrix (besides the first) which always have
the same structure. These are present in the local element stiffness matrix.

ke =
[∫

Ωe φ
′
1φ
′
1
∫

Ωe φ
′
2ϕ
′
1∫

Ωe φ
′
1φ
′
2
∫

Ωe φ
′
2ϕ
′
2

]

keab =
∫

Ωe
φ′aφ

′
b

Where the define the shape function φa = ϕi |Ωe and φb = ϕj |Ωe for some i, j ∈ 1, . . . ,n.

Lecture 27: Finite Element Method Implementation (12/10)

To go from local element stiffness ke to element stiffness Ke, use a local to global map via the locator
matrix

LM =
[
0 1 . . . n−2 n−1
1 2 . . . n−1 n

]
the LM has size nv×nel, meaning number of rows equal to the number of vertices in the element, and
number of columns equal to number of elements. The value LMa,e are indices of matrix K (equation
number) that the local node number a maps to in elements e. The basic algorithm to compute K is as
follows:

Assembly procedure

for e = 1:n

for a = 1:2 (test function)
i= LM(a,e)
for b = 1:2 (trial function)

ke(a,b) =
∫
Ωe φ

′
bφ
′
a dx

j = LM(b,e)
if i, j 6= 0, Kij ←Kij +ke(a,b)
if i 6= 0, j = 0, Fi← Fi−ke(a,b) ·g

end
fe(a) =

∫
Ωe fφa dx (local force vector)

Fi← Fi+fe(a)
if i= n, Fn← Fn+ q

end

end

When we have Dirichlet data, (0th row or 0th column), we do not update K. However, we do need to
update the force vector F if we are not at the 0th test function and we are the the 0th trial function. As
we can see, looping over elements saves a lot of computations. The question now is of how to compute
the element integrals efficiently. The answer is to use a master element.

70

Here, we take our physical element Ωe and transform it to a master element Ω̂. We choose the master
element Ω̂ = (−1,1), which is nice to integrate over. Our transformation from physical to master is
ξ(x) = 2x−(xe+xe−1)

he . The backward transformation is then x(ξ) = heξ+(xe+xe+1)
2 . Then we have

dξ

dx
= 2
he

dx

dξ
= he

2
The physical coordinates (x) are

φ1(x) = φ̂1(ξ(x))
φ2(x) = φ̂2(ξ(x))

φ′1(x) = ∂xφ1 = ∂ξφ̂1∂xξ = −1
2 ·

2
he

φ′2(x) = ∂xφ2 = ∂ξφ̂2∂xξ = 1
2 ·

2
he

The master element coordinates (ξ) are

φ̂1(ξ) = 1
2(1− ξ) = φ1(x(ξ))

φ̂2(ξ) = 1
2(1 + ξ) = φ1(x(ξ))

φ̂′1(ξ) =−1
2

φ̂′2(ξ) = 1
2

When integrating, we change variables to the master domain (we are in one dimension so the Jacobian
is just the derivative) ∫

Ωe
ψ(x) dx=

∫
Ω̂
ψ(x(ξ))dx

dξ
dξ

For example, in the problem we were working above,

fea =
∫

Ωe
f(x)φa(x) dx

=
∫ 1

−1
f(x(ξ))φa(x(ξ))h

e

2 dξ

=
∫ 1

−1
f(x(ξ))φ̂a(ξ)

he

2 dξ

the local stiffness is

keab =
∫

Ωe
φ′b(x)φ′a(x) dx

=
∫ 1

−1
φ′b(x(ξ))φ′a(x(ξ))h

e

2 dξ

=
∫ 1

−1
φ̂a,ξ(ξ)

dξ

dx
· φ̂b,ξ(ξ)

dξ

dx
· h

e

2 dξ

=
∫ 1

−1
φ̂a,ξ(ξ) · φ̂b,ξ(ξ) ·

2
he

dξ

= (−1)a+b

he

71

so the local stiffness for each element is

ke = 1
he

[
1 −1
−1 1

]

2D finite elements

Say we have a domain Ω ⊆ R2, with boundary ∂Ω that we break into ΓD, where Dirichlet boundary
conditions are specified, and ΓN , where Neumann boundary conditions are specified. We have an outward
unit normal ~n. Recall the vector calculus theorems

Lemma 7. 2D divergence theorem:
∫

Ω∇· ~f dΩ =
∫
∂Ω

~f ·~n dΓ

Integration by parts: ∇· (v ~f) = v∇· ~f +∇v · ~f so that
∫

Ω(∇· ~f)v dΩ =−
∫

Ω
~f ·∇v dΩ +

∫
∂Ω v

~f ·~n dΓ

In two dimensions, our problem is

−∇2u= r

u(x) = gD(x) x ∈ ΓD
∇u ·~n= gN (x) x ∈ ΓN

We write the solution u = u0 +w where u0(x) = gD(x) for x ∈ ΓD satisfies the Dirichlet conditions and
w ∈H1

D(Ω) = U = {w ∈H1(Ω) |w |ΓD= 0}. The weak variational formula can be found by integrating by
parts and takes the form:

(W) =

Find w ∈ U = V =H1
D(Ω)

b(w,v) = l(v) ∀v ∈ V =H1
D(Ω)

b(u,v) =
∫

Ω
∇u ·∇v dΩ

l(v) = l1(v)− b(u0,v)

l1(v) =
∫

Ω
rv dΩ +

∫
ΓN
gNv dΓN

We discretize U and V with hat functions associated to elements, so we have Uh,Vh ⊆ U,V . We break
Ω into elements by triangulating it. Then hat functions are 1 at a given node, and 0 at all other nodes,
decreasing linearly to adjacent nodes (geometrically, they are like pyramids). With a triangle element
Ωe, we have 3 local nodes, that we map to a master element. Call the set of all nodes η, and ηD the set
of Dirichlet nodes. Then η \ηD contains all of the nodes with unknown values. The size of this set then
measures the size of our system of equations, given by∑

j∈η\ηD

αjb(ϕj ,ϕi) = l1(ϕi)

=
∑
A∈ηD

gD(xA)b(ϕA,ϕi)

Then we get a linear system Kα= F . To implement this, we need proper arrays mapping local stiffness
to indices. The element nodes array describes the element mesh. For the example given in class,

IEN =

1 2 . . .
2 3 . . .
7 7 . . .

72

IEN has size. Its columns represent elements and its rows represent local node number. IENa,e is the
node number in η that the ath node in element e corresponds to.

The destination array is a row vector which tells whether a node is Dirichlet or not. Any Dirichlet node
is 0, and any non-Dirichlet node is indexed by which equation it is in.

ID =
[
0 1 2 0 3 0 4

]
Finally, we have a locator matrix, LMa,e = ID(IENa,e). Thus, LMa,e maps the ath local node in element
e to the equation number it corresponds to (with value 0 if the node is Dirichlet).

73

