A Random Random Walk Walk

Derek Lim MIT Splash! 2022

Outine

- What is a random walk?
- Random walks in 1d vs 2d vs 3d
- Continuous random walks + Brownian Motion
- PageRank algorithm
- Levy flight and animal motion
(Computer science)
(Biology, ecology)

What is a random walk?

Definition: Something that selects a random place to move to at each time step

(Definition can be made more precise with probability theory)

Example l: simple 1D random wallk

A duck moves left or right with equal probability

Example l: simple 1D random wallk

A duck moves left or right with equal probability

Example l: simple 1D random wallk

A duck moves left or right with equal probability

Example l: simple 1D random wallk

A duck moves left or right with equal probability

Example l: simple 1D random wallk

A duck moves left or right with equal probability

Example l: simple 1D random wallk

A duck moves left or right with equal probability

Example l: simple 1D random wallk

A duck moves left or right with equal probability

Example 2: Random walk in Manhattan

Why do we care about randam walks?

- They model many real-world processes (will see today)
- Very interesting mathematical objects
- Useful for algorithms and computer science (related to my research!)

About me

- Second year PhD student in computer science at MIT, doing Al research
- Studied math and computer science during undergrad at Cornell
- Mix of theory and application in my research

10, 20, and 30 simple random walks

Recall the simple 1D random walk

Flip a coin, move right if heads, move left if tails

Flip 2 coins in sequence

HH=up
HT=right
TT=down
TH=left
Simple 2D random walk

Flip 2 coins in sequence

HH=up
HT=right
TT=down
TH=left
Simple 2D randam walk

Flip 2 coins in sequence

HH=up
HT=right
TT=down
TH=left
Simple 2D randam walk

Flip 2 coins in sequence
$\mathrm{HH}=$ up
HT=right
TT=down
TH=left
Simple 2D randam walk

Flip 2 coins in sequence
$\mathrm{HH}=$ up
HT=right
TT=down
TH=left
Simple 2D randam walk

Flip 2 coins in sequence
$\mathrm{HH}=$ up
HT=right
TT=down
TH=left
Simple 2D randam walk

Flip 2 coins in sequence

HH=up
HT=right
TT=down
TH=left
Simple 2D randam walk

Flip 2 coins in sequence

HH=up
HT=right
TT=down
TH=left
Simple 2D randam walk

Flip 2 coins in sequence

HH=up
HT=right
TT=down
TH=left
Simple 2D randam walk

Flip 2 coins in sequence

HH=up
HT=right
TT=down
TH=left
Simple 2D randam walk

Flip 2 coins in sequence

HH=up
HT=right
TT=down
TH=left
Simple 2D randam walk

Flip 2 coins in sequence

HH=up
HT=right
TT=down
TH=left
Simple 2D randam walk

Flip 2 coins in sequence

HH=up
HT=right
TT=down
TH=left
Simple 2D randam walk

Flip 2 coins in sequence

HH=up
HT=right
TT=down
TH=left
Simple 2D randam walk

Flip 2 coins in sequence

HH=up
HT=right
TT=down
TH=left
Simple 2D randam walk

3D random walk: on a 3D grid

Returning home

A confused man will find his way home, but a confused bird may get lost forever
(paraphrased from Shizuo Kakutani)

How do a pollen particles move in water?

- 1827: botanist Robert Brown observed movement of pollen grains in water w/ microscope
- Noted jittery movement of small pollen particles

- Did not know why this happened!

Further wark towards A Mathematical Madel

- Further study done by Louis Bachelier (finance) in 1900 and Albert Einstein (physics) in 1905
- Norbert Wiener (math) made rigorous mathematical model in 1923
- Idea: the particle's movement is a continuous random walk, with infinitely small steps

20 Continuous random walk / Brownian mation

A 2D random walk with small steps

A 2D random walk with very small steps

30 Continuous random walk / Brownian mation

A 3D random walk with very small steps

PageRank
 A Trillion Dollar Algorithm

Google's PageRank: The trillion dollar algorithm

- In the 90s, the World Wide Web grew to hundreds of millions of web pages
- Needed good search engine to find content on web
- 1996: Larry Page and Sergey Brin developed PageRank, founded Google in 1998 based on this algorithm

A Random Walk on the Web

Imagine a random surfer surfs the web by randomly clicking

 on links

A Random Walk on the Web

Imagine a random surfer surfs the web by randomly clicking on links

A Random Walk on the Web

Imagine a random surfer surfs the web by randomly clicking

 on links

A Random Walk on the Web

Imagine a random surfer surfs the web by randomly clicking

 on links

Which web pages are most important?

PageRank random walk interpretation: a page is highly ranked if the random surfer is likely to land on it

PageRank algorithm main idea:

- Page A is important if an important page B links to it
- When is Page B important? By the same metric
- PageRank simultaneously solves for importances of all webpages (using linear algebra!)

Animal Mation

Blue Whale Movement

A Blue Whale Dodging Ships in Chile

Is a simple 20 / 3D random walk realistic?

Not really:

- Animal movement is not that erratic
- Animals have goals when they move (e.g. find food, shelter, comfortable climate)
- There are obstacles in the real world

Random Walk Modification l: Momentum

The random walker should have a tendency to move in the same direction it was already moving

Random Walk Madification 2: Goals

The random walker should be more likely to move towards things that help them achieve their goals

Random Walk Modification 3: Terrain

The random walker should mostly stay within certain boundaries

Modelling Dragon Flight in Game of Thrones

Part of a project I did for the 2019 International Mathematical Competition in Modelling

Flying Dver Westeros

- Momentum: dragons tend to fly in direction they are already going
- Goals: dragons like warmer temperatures more
- Terrain: dragons will not fly off the map of Westeros

Figure 7: Temperature Map of Westeros during Winter. Temperatures approximately taken from (Tarly [18])

Sample flight paths

Higher k means preferring warmth more

Approximate home range

Triangle = home

Shaded = places dragon will likely fly

Computed using statistical techniques

Heatmap of where dragons fly

(a) $k=.1$

(b) $k=.2$

(c) $k=.3$

(d) $k=.5$

Figure 11: Heatmaps of duration of flying over regions of the map. The more bright and yellow, the more time that that a dragon has spent in the area. 3500 random walks were simulated for each value of k.

Higher k means preferring warmth more

THANKS

CREDITS: This presentation template was created by Slidesgo, including icons by
Flaticon, and infographics \& images by
Freepik

